Skip to main content

Advertisement

Log in

A Robotic-Driven Disassembly Sequence Generator for End-Of-Life Electronic Products

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this study, we propose an intelligent automated disassembly cell for online (real time) selective disassembly. The cell is composed of an industrial robotic manipulator, a camera, range sensing and component segmentation visual algorithms. The cell prototype allows for robotic sensory-driven disassembly under uncertainty. An online genetic algorithm model for selective disassembly is also proposed for optimal and near/optimal disassembly sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kongar, E., Gupta, S.M.: Disassembly sequencing using genetic algorithm. Int. J. Adv. Manuf. Technol. 30, 497–506 (2006)

    Article  Google Scholar 

  2. ElSayed, A., Kongar, E., Gupta, S.M.: A genetic algorithm approach to end-of-life disassembly sequencing for robotic disassembly. In: Northeast Decision Sciences Institute Conference, NEDSI 2010, Alexandria, VA (2010)

  3. Moyer, L., Gupta, S.M.: Environmental concerns and recycling/disassembly efforts in the electronics industry. J. Electron. Manuf. 7, 1–22 (1997)

    Article  Google Scholar 

  4. Ammons, J.C., Realff, M.J., Newton, D., Cerav, S.: Determining reverse production systems infrastructure for electronic assemblies. In: Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment, Danvers, Massachusetts, pp. 257–262 (1999)

  5. Biddle, D.: End-of-Life Computer and Electronics Recovery Policy Options for the Mid-Atlantic States, 2nd edn. Center for Solid Waste Research, Mid-Atlantic Consortium of Recycling and Economic Development Officials (MACREDO), Philadelphia, PA, March (2000)

  6. Lambert, A.J.D., Gupta, S.M.: Demand-driven disassembly optimization for electronic products. J. Electron. Manuf. 11, 121–135 (2002)

    Article  Google Scholar 

  7. Linton, J.: Electronic products at their end-of-life: options and obstacles. J. Electron. Manuf. 9, 41–51 (1999)

    Article  Google Scholar 

  8. Sodhi, M.S., Reimer, B.: Models for recycling electronics end-of-life products. OR Spektrum 23, 97–15 (2001)

    Article  MATH  Google Scholar 

  9. Veerakamolmal, P., Gupta, S.M.: Analysis of design efficiency for the disassembly of modular electronic products. J. Electron. Manuf. 9, 79–95 (1999)

    Article  Google Scholar 

  10. Wong, L.: Barriers to implementation of electronic end-of-life product programs in the U.S., investigating the environment: research for environmental management. University of California at Berkeley, Environmental Sciences Group Major, Berkeley, CA, Compilation of Research Reports from the Fall 2000/Spring 2001 Senior Research Seminars (2001)

  11. Zhou, M., Caudill, R.J., Sebastian, D.: Multi-lifecycle product recovery for electronic products. J. Electron. Manuf. 9, 1–15 (1999)

    Article  Google Scholar 

  12. Kongar, E., Gupta, S.M.: A multiple objective tabu search approach for end-of-life product disassembly. Int. J. Adv. Operat. Manage. (IJAOM) 1, 504–531 (2009)

    Article  MATH  Google Scholar 

  13. Kongar, E., Gupta, S.M.: End-of-life processing via data envelopment analysis. In: Mantri, J.K. (ed.) Research Methodology on Data Envelopment Analysis (DEA), vol. Chapter 12, pp. 197–215. Universal Publishers, Boca Raton, Florida (2008)

    Google Scholar 

  14. Kongar, E., Mueller, D.: A comparative study on production and end-of-life cycles of anthropogenic iron cycles. In: 5th International Logistics and Supply Chain Congress 2007, Istanbul, Turkey (2007)

  15. Gungor, A., Gupta, S.M.: Issues in environmentally conscious manufacturing and product recovery: a survey. Comput. Ind. Eng. 36, 811–853 (1999)

    Article  Google Scholar 

  16. Ilgin, M.A., Gupta, S.M.: Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art. J. Environ. Manag. 91, 563–591 (2010)

    Article  Google Scholar 

  17. Valenzuela-Rendon, M., Uresti-Charre, E.: A non-generational genetic algorithm for multiobjective optimization. In: Seventh International Conference on Genetic Algorithms, pp. 658–665 (1997)

  18. Keung, K.W., Ip, W.H., Lee, T.C.: The solution of a multi-objective tool selection model using the GA approach. Int. J. Adv. Manuf. Technol. 18, 771–777 (2001)

    Article  Google Scholar 

  19. Lazzerini, B., Marcelloni, F.: A genetic algorithm for generating optimal assembly plans. Artif. Intell. Eng. 14, 319–329 (2000)

    Article  Google Scholar 

  20. Kongar, E., Gupta, S.M.: Disassembly to order system under uncertainty. OMEGA 34, 550–561 (2006)

    Article  Google Scholar 

  21. McGovern, S.M., Gupta, S.M.: A balancing method and genetic algorithm for disassembly line balancing. Eur. J. Oper. Res. 179, 692–708 (2007)

    Article  MATH  Google Scholar 

  22. Lee, D.-H., Kang, J.-G., Xirouchakis, P.: Disassembly planning and scheduling: review and further research. J. Eng. Manuf. 215, 695–709 (2001)

    Article  Google Scholar 

  23. Lambert, A.J.D., Gupta, S.M.: Disassembly Modeling for Assembly, Maintenance, Reuse, and Recycling. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  24. Sanderson, A.C., Homem de Mello, L.S., Zhang, H.: Assembly sequence planning. AI Mag. 1990, 62–81 (1990)

    Google Scholar 

  25. Seo, K.-K., Park, J.-H., Jang, D.-S.: Optimal disassembly sequence using genetic algorithms considering economic and environmental aspects. Int. J. Adv. Manuf. Technol. 18, 371–380 (2001)

    Article  Google Scholar 

  26. Bierwirth, C., Mattfeld, D.C., Kopfer, H.: On permutation representations for scheduling problems. In: Voigt, H.M., et al. (eds.) Parallel Problem Solving from Nature—PPSN IV. Lecture Notes in Computer Science, vol. 1141, pp. 310–318. Springer, Berlin, Germany (1996)

    Chapter  Google Scholar 

  27. Bierwirth, C., Mattfeld, D.C.: Production scheduling and rescheduling with genetic algorithms. Evol. Comput. 7, 1–18 (1999)

    Article  Google Scholar 

  28. Hui, W., Dong, X., Guanghong, D.: A genetic algorithm for product disassembly sequence planning. Neurocomputing 71, 2720–2726 (2008)

    Article  Google Scholar 

  29. Shimizu, Y., Tsuji, K., Nomura, M.: Optimal disassembly sequence generation using a genetic programming. Int. J. Prod. Res. 45, 4537–4554 (2007)

    Article  MATH  Google Scholar 

  30. Torres, F., Gil, P., Puente, S.T., Pomares, J., Aracil, R.: Automatic PC disassembly for component recovery. Int. J. Adv. Manuf. Technol. 23, 39–46 (2004)

    Article  Google Scholar 

  31. Torres, F., Puente, S.T., Aracil, R.: Disassembly planning based on precedence relations among assemblies. Int. J. Adv. Manuf. Technol. 21, 317–327 (2003)

    Article  Google Scholar 

  32. Pomares, J., Puente, S.T., Torres, F., Candelas, F.A., Gil, P.: Virtual disassembly of products based on geometric models. Comput. Ind. 55, 1–14 (2004)

    Article  Google Scholar 

  33. Gil, P., Pomares, J., Puente, S.V., Diaz, C., Candelas, F., Torres, F.: Flexible multi-sensorial system for automatic disassembly using cooperative robots. Int. J. Comput. Integr. Manuf. 20, 757–772 (2007)

    Article  Google Scholar 

  34. Torres, F., Puente, S., Diaz, C.: Automatic cooperative disassembly robotic system: task planner to distribute tasks among robots. Control Eng. Pract. 17, 112–121 (2009)

    Article  Google Scholar 

  35. ElSayed, A., Kongar, E., Gupta, S.M., Sobh, T.: An online genetic algorithm for automated disassembly sequence generation. In: Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2011, Paper No: DETC/MESA 2011-48635, 28–31 August 2011, Washington, DC, USA (2011)

  36. Milani, A.: Online genetic algorithms. Int. J. Inf. Theor. Appl. 11, 20–28 (2004)

    Google Scholar 

  37. Brunelli, R.: Template Matching Techniques in Computer Vision: Theory and Practice. John Wiley & Sons Inc (2009)

  38. Gil, P., Torres, F., Ortiz, F.G., Reinoso, O.: Detection of partial occlusions of assembled components to simplify the disassembly tasks. Int. J. Adv. Manuf. Technol. 30, 530–539 (2006)

    Article  Google Scholar 

  39. Lewis, J.P.: Fast Normalized Cross-Correlation. Industrial Light & Magic (1995)

  40. MathWorks: Matlab and simulink for technical computing. http://www.mathworks.com (2011). Accessed November 2011

  41. Lewis, J.P.: Fast Template Matching. In: Vision Interface, p. 120–123 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed ElSayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ElSayed, A., Kongar, E., Gupta, S.M. et al. A Robotic-Driven Disassembly Sequence Generator for End-Of-Life Electronic Products. J Intell Robot Syst 68, 43–52 (2012). https://doi.org/10.1007/s10846-012-9667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9667-8

Keywords

Navigation