Skip to main content
Log in

Computation for Maximum Stable Grasping in Dynamic Force Distribution

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

One of the fundamental problems in grasping and manipulation of an object by a multi-fingered robotic hand is the computation of contact forces to equilibrate the dynamic external wrench on the grasped object. This paper proposes a two-phase algorithm to calculate the contact forces in order to achieve maximum grasp stability, assuming there is no any slippage in the process of grasping. In the off-line phase, a nonsingular simplex set is obtained by the zone triangulation of the contact primitive wrench set in the wrench space, and the neighbors of the resultant simplexes are recorded by a neighbor-searching procedure. In the on-line phase, a specific simplex in which the required resultant wrench is located can find out rapidly since all neighbors of each simplex have been recorded before. The optimal contact forces can be obtained by the combination of the primitive forces corresponding to the vertices of this simplex. A numerical example shows the proposed algorithm takes a thousandth of the computation time exhausted by the sequential quadratic programming (SQP) or the straightforward bisection method with only a slight lost of optimality, and obtains better solution compared to the decomposition and positive combination (DPC) algorithm at the similar computation speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buss, M., Hashimoto, H., Moore, J.B.: Dextrous hand grasping force optimization. IEEE Trans. Robot. Autom. 12(3), 406–418 (1996)

    Article  Google Scholar 

  2. Buss, M., Faybusovich, L., Moore, J.B.: Dikin-type algorithms for dextrous grasping force optimization. Int. J. Rob. Res. 17(8), 831 (1998)

    Article  Google Scholar 

  3. Helmke, U., Huper, K., Moore, J.B.: Quadratically convergent algorithms for optimal dextrous hand grasping. IEEE Trans. Robot. Autom. 18(2), 138–146 (2002)

    Article  Google Scholar 

  4. Han, L., Trinkle, J.C., Li, Z.X.: Grasp analysis as linear matrix inequality problems. IEEE Trans. Robot. Autom. 16(6), 663–674 (2000)

    Article  Google Scholar 

  5. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

  6. Cornellā, J., Suárez, R., Carloni, R., Melchiorri, C.: Dual programming based approach for optimal grasping force distribution. Mechatronics 18(7), 348–356 (2008)

    Article  Google Scholar 

  7. Boyd, S.P., Wegbreit, B.: Fast computation of optimal contact forces. IEEE Trans. Robot. 23(6), 1117–1132 (2007)

    Article  Google Scholar 

  8. Maekawa, H., Tanie, K., Komoriya, K.: Dynamic grasping force control using tactile feedback for grasp of multifingered hand. In: 1996 IEEE Int. Conf. Robot. Autom., pp. 2462–2469. IEEE

  9. Zuo, B.R., Qian, W.H.: A general dynamic force distribution algorithm for multifingered grasping. IEEE Trans. Syst. Man Cybern. Part B Cybern. 30(1), 185–192 (2000)

    Article  Google Scholar 

  10. Zheng, Y., Qian, W.H.: Dynamic force distribution in multifingered grasping by decomposition and positive combination. IEEE Trans. Robot. 21(4), 718–726 (2005)

    Article  Google Scholar 

  11. Zheng, Y., Qian, W.H.: A fast procedure for optimizing dynamic force distribution in multifingered grasping. IEEE Trans. Syst. Man Cybern.-Part B Cybern. 36(6), 1417–1422 (2006)

    Article  Google Scholar 

  12. Mantriota, G.: Communication on optimal grip points for contact stability. Int. J. Rob. Res. 18(5), 502–513 (1999)

    Google Scholar 

  13. Suárez, R., Roa, M., Cornellà, J.: Grasp quality measures. Technical Report IOC-DT-P-2006-10, Universitat Politècnica de Catalunya, Institut d’Organització i Control de Sistemes Industrials (2006)

  14. Liu, Y.H.: Qualitative test and force optimization of 3-D frictional form-closure grasps using linear programming. IEEE Trans. Robot. Autom. 15(1), 163–173 (1999). doi:10.1109/70.744611

    Article  Google Scholar 

  15. Liu, G., Xu, J., Li, Z.: On geometric algorithms for real-time grasping force optimization. IEEE Trans. Control Syst. Technol. 12(6), 843–859 (2004)

    Article  MathSciNet  Google Scholar 

  16. Zheng, Y., Qian, W.: Linearizing the soft finger contact constraint with application to dynamic force distribution in multifingered grasping. Sci. China, Ser. E 48(2), 121–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zheng, Y., Chew, C.M.: Distance between a point and a convex cone in n-dimensional space: computation and applications. IEEE Trans. Robot. 25(6), 1397–1412 (2009)

    Article  Google Scholar 

  18. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, FL, USA (1994)

    MATH  Google Scholar 

  19. Howe, R.D., Kao, I., Cutkosky, M.R.: The sliding of robot fingers under combined torsion and shear loading. In: 1988 IEEE Int. Conf. Robot. Automat., pp. 103–105, vol. 101. IEEE (1988)

  20. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 4(2), 193–203 (1988). doi:10.1109/56.2083

    Article  Google Scholar 

  22. Van den Bergen, G., Van, G.: A fast and robust GJK implementation for collision detection of convex objects. J. Graphics Tools 4(2), 7–25 (1999)

    Article  Google Scholar 

  23. Wöhlke, G.: A simulation-based grasp planning system for multifinger robot hands. In: Proceedings of the 1993 IEEE International Symposium on Intelligent Control, pp. 219–224. IEEE (1993)

  24. Zheng, Y., Lin, M.C., Manocha, D.: A fast n-dimensional ray-shooting algorithm for grasping force optimization. In: 2010 IEEE Int. Conf. Robot. Autom., pp. 1300–1305. IEEE (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Quan Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, SQ., Wu, TJ. Computation for Maximum Stable Grasping in Dynamic Force Distribution. J Intell Robot Syst 68, 225–243 (2012). https://doi.org/10.1007/s10846-012-9682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9682-9

Keywords

Navigation