Skip to main content
Log in

Cooperation Between UAS and Wireless Sensor Networks for Efficient Data Collection in Large Environments

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper describes a method for collection of data from Wireless Sensor Network (WSN) deployed in large environments using Unmanned Aerial Systems (UAS). Unlike existing approaches, in which the WSN and the UAS act as independent units, the main novelty of the proposed method is that UAS and WSN cooperate to increase the performance of the mission. The proposed method presents two main cooperative behaviors: (1) the results of the WSN operation are used to update the UAS flight plan and; (2) the UAS trajectory is considered in the operation of the WSN in order to improve the data collection performance. The proposed method outperforms non-cooperative UAS-based collection approaches and traditional ground multi-hop collection schemes. The method has been experimented in the airfield of Bellavista in Seville (Spain) in March 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banatre, M., Marrón, P.J., Ollero, A., Wolisz, A. (eds.): Cooperating Embedded Systems and Wireless Sensor Networks. Wiley, New York (2008)

    Google Scholar 

  2. Batalin, M.A., Sukhatme, G.S.: Coverage, exploration and deployment by a mobile robot and communication network. In: Proc. Intl. Workshop on Inf. Processing in Sensor Networks, pp. 376–391 (2003)

  3. Ganeriwal, S., Kansal, A., Srivastava, M.B.: Self aware actuation for fault repair in sensor neworks. In: Proc. IEEE ICRA 2004 (2004)

  4. Kansal, A., Somasundara, A.A., Jea, D.D., Srivastava, M.B., Estrin, D.: Intelligent fluid infrastructure for embedded networks. In: Proc. 2nd Intl. Conf. on Mobile Systems, Applications, and Services (MobiSys) (2004)

  5. Tekdas, O., Isler, V., Lim, J.H., Terzis, A.: Using mobile robots to harvest data from sensor fields. IEEE Wirel. Commun. 16(1), 22–28 (2009)

    Article  Google Scholar 

  6. Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., Corke, P.: Data collection, storage, and retrieval with an underwater sensor network. In: Proc. of the 3rd Intl. Conf. on Embedded Networked Sensor Systems, San Diego, US (2005)

  7. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

    Article  Google Scholar 

  8. Kansal, A., Somasundara, A.A., Jea, D.D., Srivastava, M.B., Estrin, D.: Intelligent fluid infrastructure for embedded networks. In: Proceedings 2nd Intl. Conf. Mobile Systems, Applications and Services, (MobiSys’04), pp. 111–124, Boston, Massachusetts, USA, 6–9 June 2004

  9. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: modelling a three-tier architecture for sparse sensor networks. In: Proc. of the 2nd ACM Intl. Workshop on Wireless Sensor Networks and Applications (SNPA’03), pp. 30–41 (2003)

  10. Chakrabarti, A., Sabharwal, A., Aazhang, B.: Using predictable observer mobility for power efficient design of sensor networks. In: Proc. 2nd Intl. Workshop on Information Processing in Sensor Networks (IPSN’03) (2003)

  11. Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling for efficient data collection in wireless sensor networks with dynamic deadlines. In: Proc. 25th IEEE Intl. Real-Time Systems Symposium, pp. 296–305, 5–8 December 2004

  12. Zhang, P., Sadler, Ch.M., Lyon, S.A., Martonosi, M.: Hardware design experiences in ZebraNet. In: Proc. of the 2nd ACM Conference on Sensor and Ad Hoc Systems, Sensys’04, pp. 227–238 (2004)

  13. Yang, X., Vaidya, N.: A wakeup scheme for sensor networks: achieving balance between energy saving and end-to-end delay. In: Proc. of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04), pp. 19–26 (2004)

  14. Gu, L., Stankovic, J.: Radio-triggered wake-up for wireless sensor net-works. Real-Time Syst. 29, 157–182 (2005)

    Article  Google Scholar 

  15. Mitchell, P.D., Qiua, J., Lia, H.: Use of aerial platforms for energy efficient medium access control in wireless sensor networks. Comput. Commun. 33(4), 500–512 (2010)

    Article  Google Scholar 

  16. Pignaton, E., Morado, A., Pereira, C.E., Larsson, T.: Middleware support in unmanned aerial vehicles and wireless sensor networks for surveillance applications. Studies in Computational Intelligence, vol. 237, pp. 289–296 (2009)

  17. Ho, T.D., Park, J., Shimamoto, S.: Power and performance tradeoff of MAC protocol for wireless sensor network employing UAV. In: Intl. Conf. on Advanced Technologies for Communications (ATC), 2010, pp. 23–28, 20–22 Oct 2010

  18. Teh, S.K., Mejias, L., Corke, P., Hu, W.: Experiments in integrating autonomous uninhabited aerial vehicles (UAVs) and wireless sensor networks. In: Proc. of the 2008 Australasian Conf. on Robotics and Automation (ACRA 08), Canberra (2008)

  19. Valente, J., Sanz, D., Barrientos, A., del Cerro, J., Ribeiro, A., Rossi, C.: An air-ground wireless sensor network for crop monitoring. Sensors 11(6), 6088–6108 (2011)

    Article  Google Scholar 

  20. Cobano, J.A., Martínez-de Dios, J.R., Conde, R., Sánchez-Matamoros, J.M., Ollero, A.: Data retrieving from heterogeneous wireless sensor network nodes using UAVs. J. Intell. Robot. Syst. 60(1), 133–151 (2010)

    Article  MATH  Google Scholar 

  21. Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., Sukhatme, G.: Deployment and connectivity repair of a sensor net with a flying robot. In: Experimental Robotics IX, Springer Tracts in Advanced Robotics, Springer (2006)

  22. Ollero, A., Bernard, M., La Civita, M., van Hoesel, L.F.W., Marron, P.J., Lepley, J., de Andres, E.: AWARE: platform for autonomous self-deploying and operation of wireless sensor-actuator networks cooperating with unmanned aerial vehicles. In: Proc. IEEE SSRR 2007 (2007)

  23. Corke, P., Peterson, R., Rus, D.: Coordinating aerial robots and sensor networks for localization and navigation. In: Distributed Autonomous Robotic Systems 6, Part VII, pp. 295–304 (2007)

  24. Allred, J., Hasan, A.B., Panichsakul, S., Pisano, W., Gray, P., Huang, J., Han, R., Lawrence, D., Mohseni, K.: SensorFlock: an airborne wireless sensor network of micro-air vehicles. In: Proc. of the 5th Intl. Conf. on Embedded Networked Sensor Systems, pp. 117–129 (2007)

  25. Todd, M., Mascarenas, D., Flynn, E., Rosing, T., Lee, B., Musiani, D., Dasgupta, S., Kpotufe, S., Hsu, D., Gupta, R., Park, G., Overly, T., Nothnagel, M., Farrar, C.: A different approach to sensor networking for SHM: remote powering and interrogation with unmanned aerial vehicles. In: Proc. 6th Intl. Workshop on Structural Health Monitoring (2007)

  26. Miluzzo, E., Zheng, X., Fodor, K., Campbell, A.T.: Radio characterization of 802.15.4 and its impact on the design of mobile sensor networks. In: 5th European Conference on Wireless Sensor Networks, EWSN 2008, Bologna, Italy, 30 January–1 February 2008. Proceedings. Lecture Notes in Computer Science, vol. 4913/2008, pp. 171–188 (2008). ISBN 978-3-540-77689-5

  27. Le-Huy, Ph., Roy, S.: Low-power wake-up radio for wireless sensor networks. Mob. Netw. Appl. 15(2), 226–236 (2010)

    Article  Google Scholar 

  28. Guilmore, J.F.: Autonomous vehicle planning analysis methodology. In: Proc. of the AIAAA Guidance Navigation Control Conference, Denver, CO, Paper 2000–4370 (1991)

  29. Szczerba, R.J.: Threat neeting for real-time, intelligent route planners. In: Proc. of the IEEE Symposium Information, Decision and Control, Adelaide, Australia, pp. 377–382 (1999)

  30. Bellingham, J., Tillerson, M., Richards, A., How, J.P.: Multi-task allocation and path planning for cooperating UAVs. In: Cooperative Control: Models, Applications and Algorithms, pp. 1–19 (2001)

  31. McLain, T.W., Beard, R.W.: Coordination variables, coordination functions and cooperative timing missions. J. Guid. Control Dyn. 28(1), 150–161 (2005)

    Article  Google Scholar 

  32. Teo, A., Singh, G., McEachen, J.C.: Evaluation of the XMesh routing protocol in wireless sensor networks. In: Proc. 49th IEEE MWSCAS, vol. 2, pp. 113–117 (2006)

  33. Prayati, A., Antonopoulos, Ch., Stoyanova, T., Koulamas, C., Papadopoulos, G.: A modeling approach on the TelosB WSN platform power consumption. J. Syst. Softw. 83, 1355–1363 (2010)

    Article  Google Scholar 

  34. Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless research. In: Proc. Int. Symposium on Information Processing in Sensor Networks, 2005. IPSN 2005. April 2005, pp 364–369 (2005)

  35. Telos: Ultra low power IEEE 802.15.4 compliant wireless sensor module, datasheet. MoteIV Corporation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Martinez-de Dios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-de Dios, J.R., Lferd, K., de San Bernabé, A. et al. Cooperation Between UAS and Wireless Sensor Networks for Efficient Data Collection in Large Environments. J Intell Robot Syst 70, 491–508 (2013). https://doi.org/10.1007/s10846-012-9733-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9733-2

Keywords

Navigation