Skip to main content
Log in

Closed-Curve Path Tracking for Decentralized Systems of Multiple Mobile Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper we address the problem of making a group of mobile robots cooperatively track an assigned path. We consider paths described by completely arbitrarily shaped closed curves. The proposed control strategy is a fully decentralized algorithm and it does not require any global synchronization. The desired behavior is obtained by means of some properly designed artificial potential functions. Analytical proofs are provided to show the asymptotic convergence of the system to the desired behavior. Matlab simulations and experiments on real robots are described as well for validation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beard, R.W., Stepanyan, V.: Synchronization of information in distributed multiple vehicle coordinated control. In: In Proceedings of IEEE Conference on Decision and Control, pp. 2029–2034 (2003)

  2. Bellingham, J., Tillerson, M., Richards, A., How, J.P.: Multi-task allocation and path planning for cooperative UAVs. In: Cooperative Control: Models, Applications, and Algorithms, pp. 23–41 (2003)

  3. Buck, S., Weber, U., Beetz, M., Schmitt, T.: Multi-robot path planning for dynamic environments: a case study. In: Proceedings of International Conference on Intelligent Robots and Systems, vol. 3, pp. 1245–1250. IEEE/RSJ (2001)

  4. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press (2009). Electronically available at http://coordinationbook.info

  5. Cao, Y., Fierro, R.: Dynamic boundary tracking using dynamic sensor nets. In: Proceedings of the 45th IEEE Conference on Decision and Control (2006)

  6. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Transactions on Robotics 25(4), 912–926 (2009)

    Article  Google Scholar 

  7. Choudhury, B.B., Biswal, B.B.: An optimized multirobot task allocation. In: Proceedings of the First International Conference on Emerging Trends in Engineering and Technology, pp. 320–325 (2008)

  8. Clark, C.M., Rock, S.M., Latombe, J.C.: In: Robotics and Automation. In: Proceedings of the IEEE International Conference on ICRA ’03, vol. 3, pp. 4222–4227 (2003)

  9. Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Proc. IEEE 97(7), 1257–1270 (2006)

    Article  Google Scholar 

  10. Dimarogonas, D.V., Zavlanos, M.M., Loizou, S.G., Kyriakopoulos, K.J.: Decentralized motion control of multiple holonomic agents under input constraints. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 4, pp. 3390–3395 (2003)

  11. Do, K.D.: Formation tracking control of unicycle-type mobile robots with limited sensing ranges. IEEE Trans. Control Syst. Technol. 16, 527–538 (2008)

    Article  MathSciNet  Google Scholar 

  12. Egerstedt, M., Hu, X., Stotsky, A.: Control of mobile platforms using a virtual vehicle approach. IEEE Trans. Automat. Contr. 46(11), 1777–1782 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Automat. Contr. 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  14. Hsieh, M.A., Loizou, S., Kumar, V.: Stabilization of multiple robots on stable orbits via local sensing. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2312–2317 (2007)

  15. Jang, S., Song, G., Hong, S.K.: Dynamic boundary tracking in active sensor networks. In: Proceedings of the International Conference on Control, Automation and Systems (2007)

  16. Jin, Z., Bertozzi, A.L.: Environmental boundary tracking and estimation using multiple autonomous vehicles. In: Proceedings of the 46th IEEE Conference on Decision and Control (2007)

  17. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)

  18. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Rob. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  19. Lin, M.C., Sud, A., Van den Berg, J., Gayle, R., Curtis, S., Yeh, H., Guy, S., Andersen, E., Patil, S., Sewall, J., Manocha, D.: Real-time path planning and navigation for multi-agent and crowd simulations. In: Lecture Notes in Computer Science, Motion in Games, pp. 23–32. Springer, Berlin (2008)

  20. Marcolino, L.S., Chaimowicz, L.: No robot left behind: Coordination to overcome local minima in swarm navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation (2008)

  21. Mercker, T., Casbeer, D.W., Millet, P.T., Akella, M.R.: An extension of consensus-based auction algorithms for decentralized, time-constrained task assignment. In: Proceedings of the American Control Conference, pp. 6324–6329 (2010)

  22. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65 (2009)

  23. Oriolo, G., Luca, A.D., Vendittelli, M.: WMR control via dynamic feedback linearization: Design, implementation, and experimental validation. In: IEEE Transactions On Control Systems Technology (2002)

  24. Piege, L., Tiller, W.: The NURBS Book. Springer, Berlin (1995–1997)

  25. Ronzoni, D., Olmi, R., Secchi, C., Fantuzzi, C.: AGV global localization using indistinguishable artificial landmarks. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 287–292 (2011)

  26. Sabattini, L., Secchi, C., Fantuzzi, C.: Potential based control strategy for arbitrary shape formations of mobile robots. In: Proceedings of the IEEE/RJS International Conference on Intelligent Robots and Systems, pp. 3762–3767 (2009)

  27. Sabattini, L., Secchi, C., Fantuzzi, C., Possamai, D.: Tracking of closed-curve trajectories for multi-robot systems. In: Proceedings of the IEEE/RJS International Conference on Intelligent Robots and Systems, pp. 6089–6094 (2010)

  28. Sabattini, L., Secchi, C., Fantuzzi, C.: Arbitrarily shaped formations of mobile robots: artificial potential fields and coordinate transformation. Auton. Robots 30(4), 385–397 (2011)

    Article  Google Scholar 

  29. Schumacher, C., Chandler, P., Rasmussen, S.: Task allocation for wid area search munition. In: Proceedings of the American Control Conference, pp. 1917–1922 (2002)

  30. Susca, S., Bullo, F., Martínez, S.: Synchronization of beads on a ring. In: Proceedings of the 46th IEEE Conference on Decision and Control (2007)

  31. Tsalatsanis, A., Yalcin, A., Valavanis, K.: Optimized task allocation in cooperative robot teams. In: Proceedings of the IEEE Mediterranean Conference on Control and Automation, pp. 270–275 (2009)

  32. Warren, C.W.: Multiple robot path coordination using artificial potential fields. IEEE Int. Conf. Robot. Autom. 1, 500–505 (1990)

    Article  Google Scholar 

  33. Wolf, M.T., Burdick, J.W.: Artificial potential functions for highway driving with collision avoidance. In: Proceedings of the IEEE International Conference on Robotics and Automation (2008)

  34. Wurman, P., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag. 29(1), 9–20 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Sabattini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabattini, L., Secchi, C. & Fantuzzi, C. Closed-Curve Path Tracking for Decentralized Systems of Multiple Mobile Robots. J Intell Robot Syst 71, 109–123 (2013). https://doi.org/10.1007/s10846-012-9763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9763-9

Keywords

Navigation