Skip to main content
Log in

Three-dimensional Route Planning for Unmanned Aerial Vehicles in a Risk Environment

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper introduces a new approach for three-dimensional flight path optimization for unmanned aerial vehicles. It considers the performance of the air vehicle as well as mission specific requirements including the avoidance of no-fly areas, risk reduction in threat environments by terrain following flight or terrain masking low-level flight, and other regulations such as fixed release and approach vectors at the start and destination locations. The focus of the approach is on a proper discretization of the airspace by a network which allows the application of standard algorithms of combinatorial optimization. In contrast to conventional discretizations by grids or grid-like graphs, our network is non-regular since created by some random process. Moreover, each path in the network corresponds to a twice continuously differentiable trajectory which obeys the kinematic restrictions of the air vehicle and which is feasible with respect to the operational requirements of the mission. With suitable costs defined on the edges of the network, a minimum-cost path calculation allows to identify a trajectory of shortest length, shortest flight time, minimum flight height, or minimum visibility from the ground. The latter objectives aim to minimize the probability of being detected by hostile forces, hence increasing the survivability of the air vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall, New York (1993)

    MATH  Google Scholar 

  2. Babel, L.: Trajectory planning for unmanned aerial vehicles—a network optimization approach. Math. Methods Oper. Res. 7(3), 343–360 (2011)

    MathSciNet  Google Scholar 

  3. Beasley, J., Christofides, N.: An algorithm for the resource constrained shortest path problem. Netw. 19(4), 379–394 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellman, R.E.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)

    MATH  Google Scholar 

  5. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193–207 (1998)

    Article  MATH  Google Scholar 

  6. Bortoff, S.A.: Path planning for UAVs. In: Proc Am Control Conf, pp. 364–368. Chicago, Illinois (2000)

  7. Carlyle, W.M., Royset, J.O., Wood, R.K.: Routing military aircraft with a constrained shortest-path algorithm. Mil. Oper. Res. 14(3), 31–52 (2009)

    Google Scholar 

  8. Clarke, K.C.: Getting Started with Geographic Information Systems. Prentice Hall, Upper Saddle River, NJ (1997)

    Google Scholar 

  9. Choset, H., Burgard, W., Hutchinson, S., Kantor, G., Kavraki, L.E., Lynch, K., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Cambridge (2005)

    Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  11. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press (1962)

  12. De Filippis, L., Guglieri G.: Advanced graph search algorithms for path planning of flight vehicles. In: Agarwal, R.K. (ed.) Recent Advances in Aircraft Technology, pp. 159–192. Intech (2012)

  13. De Filippis, L., Guglieri G., Quagliotti, F.: Path planning strategies for UAVs in 3D environments. J. Intell. Robot. Syst. 65, 247–264 (2012)

    Article  Google Scholar 

  14. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Algorithmics LNCS, vol. 5515, pp. 117–139. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  15. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithm for the weight-constrained shortest path problem. Netw. 4(3), 135–153 (2003)

    Article  MathSciNet  Google Scholar 

  17. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  18. Fujimura, K., Tunii, T.L.: Motion Planning in Dynamic Environments. Springer, Secaucus (1992)

    Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)

  20. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 57, 65–100 (2010)

    Article  MATH  Google Scholar 

  21. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. In: Proc 16th Annu ACM-SIAM Symp Discret Algorithms, pp. 156–165 (2005)

  22. Halpern, M.E.: Optimal trajectories for aircraft terrain following and terrain avoidance—a literature review update. Technical Report 5, DSTO Australia (1993)

  23. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  24. Hassin, R.: Approximated schemes for the restricted shortest path problem. Math. Oper. Res. 17(1), 36–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Helgason, R.V., Kennington, J.L., Lewis, K.R.: Cruise missile mission planning: a heuristic algorithm for automatic path generation. J. Heuristics 7(5), 473–494 (2001)

    Article  Google Scholar 

  26. Hwang, Y.K., Ahuja, N.: Gross motion planning—a survey. ACM Comput. Surv. 24(3), 219–291 (1992)

    Article  Google Scholar 

  27. Jun, M., D’Andrea, R.: Path planning for unmanned aerial vehicles in uncertain and adversarial environments. In: Cooperative Control: Models, Applications and Algorithms, Chapter 6, pp. 95–111. Kluwer (2003)

  28. Kothari, M., Postlethwaite, I., Gu, D.: Multi-UAV path planning in obstacle rich environments using rapidly-exploring random trees. In: Proc Joint 48th IEEE Conf Decision Control and 28th Chinese Control Conf, pp. 3069–3074 Shanghai, P.R. China (2009)

  29. Kuipers, F.A., Korkmaz, T., Krunz, M., Van Mieghem, P.: Performance evaluation of constraint-based path selection algorithms. IEEE Netw. 18(5), 16–23 (2004)

    Article  Google Scholar 

  30. Latombe, J.C.: Robot Motion Planning. Kluwer Publishers, Boston (1991)

    Book  Google Scholar 

  31. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

  32. Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted shortest path problem. Oper. Res. Lett. 28(5), 213–219 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Molarek, S.M., Kosari, A.R.: Novel minimum time trajectory planning in terrain following flights. IEEE Trans. Aerosp. Electron. Syst. 43(1), 2–12 (2007)

    Article  Google Scholar 

  34. Polymenakos, L.C., Bertsekas, D.P., Tsitsiklis, J.N.: Implementation of effcient algorithms for globally optimal trajectories. IEEE Trans. Automat. Contr. 43(2), 278–283 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rippel, E., Bar-Gill, A., Shimkin, N.: Fast graph-search algorithms for general-aviation flight trajectory generation. J. Guid. Control Dyn. 28(4), 801–811 (2005)

    Article  Google Scholar 

  36. Sarris, Z.: Survey of UAV Applications in Civil Markets. STN ATLAS-3Sigma AE and Technical University of Crete, DPEM, 73100 Chania, Crete, Greece (2001)

  37. de Smith, M., Longley, P., Goodchild, M.: Geospatial analysis—a comprehensive guide to principles. Techniques and Software Tools. Leicester, UK (2009)

    Google Scholar 

  38. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Contr. 40(9), 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Warren, C.W.: A technique for autonomous underwater vehicle route planning. IEEE J. Oceanic Eng. 15(3), 199–204 (1990)

    Article  Google Scholar 

  40. Zabarankin, M., Uryasev, S., Pardalos, P.: Optimal risk path algorithms. In: Murphey, R., Pardalos, P. (eds.) Cooperative Control and Optimization, pp. 271–303. Kluwer, Dordrecht (2001)

  41. Zabarankin, M., Uryasev, S., Murphey, R.: Aircraft routing under the risk of detection. Nav. Res. Logist. 53(8), 728–747 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luitpold Babel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babel, L. Three-dimensional Route Planning for Unmanned Aerial Vehicles in a Risk Environment. J Intell Robot Syst 71, 255–269 (2013). https://doi.org/10.1007/s10846-012-9773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9773-7

Keywords

Mathematics Subject Classifications (2010)

Navigation