Skip to main content
Log in

Obstacle Modelling Oriented to Safe Motion Planning and Control for Planar Rigid Robot Manipulators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Trajectory planning and tracking are crucial tasks in any application using robot manipulators. These tasks become particularly challenging when obstacles are present in the manipulator workspace. In this paper a n-joint planar robot manipulator is considered and it is assumed that obstacles located in its workspace can be approximated in a conservative way with circles. The goal is to represent the obstacles in the robot configuration space. The representation allows to obtain an efficient and accurate trajectory planning and tracking. A simple but effective path planning strategy is proposed in the paper. Since path planning depends on tracking accuracy, in this paper an adequate tracking accuracy is guaranteed by means of a suitably designed Second Order Sliding Mode Controller (SOSMC). The proposed approach guarantees a collision-free motion of the manipulator in its workspace in spite of the presence of obstacles, as confirmed by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barraquand, J., Langlois, B., Latombe, J.C.: Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992)

    Article  MathSciNet  Google Scholar 

  2. Bartolini, G., Ferrara, A., Levant, A., Usai, E.: On second order sliding mode controllers. In: Young, K.D., Ozguner, U. (eds.) Lecture Notes on Control and Information Science, vol. 247, pp. 329–350. Springer (1999)

  3. Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second order sliding mode control. IEEE Trans. Automat. Contr. 43(2), 241–246 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartolini, G., Pisano, A., Usai, E.: Digital second-order sliding mode control for uncertain nonlinear systems. Automatica 37(9), 1371–1377 (2001)

    Article  MATH  Google Scholar 

  5. Calanca, A., Capisani, L.M., Ferrara, A., Magnani, L.: An inverse dynamics-based discrete-time sliding mode controller for robot manipulators. In: Kozlowski, K. (ed.) Robot Motion and Control 2007, (LNCiS) Lecture Notes in Control and Information Sciences, n. 360, ch. 12, pp. 137–146. Springer, London, UK (2007)

    Chapter  Google Scholar 

  6. Capisani, L.M., Facchinetti, T., Ferrara, A.: Second order sliding mode real-time networked control of a robotic manipulator. In: Proc. 12th IEEE Conference on Emerging Technologies and Factory Automation, pp. 941–948. Patras, Greece (2007)

  7. Capisani, L.M., Ferrara, A., Magnani, L.: MIMO identification with optimal experiment design for rigid robot manipulators. In: Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1–6. Zürich, Switzerland (2007)

  8. Capisani, L.M., Ferrara, A., Magnani, L.: Second order sliding mode motion control of rigid robot manipulators. In: Proc. 46th IEEE Conference on Decision and Control, pp. 3691–3696. New Orleans, Louisiana, USA (2007)

  9. Capisani, L.M., Ferrara, A., Magnani, L.: Design and experimental validation of a second-order sliding-mode motion controller for robot manipulators. Int. J. Control 82(2), 365–377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion, Theory, Algorithms and Implementations. MIT Press, Cambridge, Massachusetts, USA (2005)

    MATH  Google Scholar 

  11. Colbaugh, R.D., Bassi, E., Benzi, F., Trabatti, M.: Enhancing the trajectory tracking performance capabilities of position-controlled manipulators. In: Proc. IEEE Industry Applications Conference, vol. 2, pp. 1170–1177. Rome, Italy (2000)

  12. Diankov, R., Ratliff, N., Ferguson, D., Srinivasa, S., Kuffner, J.: Bispace planning: Concurrent multi-space exploration. In: Robotics: Science and Systems. Zürich, Switzerland (2008)

    Google Scholar 

  13. Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London, UK (1998)

    Google Scholar 

  14. Guldner, J., Utkin, V.I., Hashimoto, H., Harashima, F.: Obstacle avoidance in r n based on artificial harmonic potential fields. In: Proc. IEEE Conference on robotics and automation, vol. 3, pp. 3051–3056. Nagoya, Aichi, Japan (1995)

  15. Hwang, Y.K., Ahuja, N.: A potential field approach to path planning. IEEE Trans. Robot. Autom. 8(1), 23–31 (1992)

    Article  Google Scholar 

  16. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London, UK (1995)

    Book  MATH  Google Scholar 

  17. Keymeulen, D., Decuyper, J.: The fluid dynamics applied to mobile robot motion: the stream field method. In: Proc. IEEE Conference on Robotics and Automation, vol. 1, pp. 378–385. San Diego, California, USA (1994)

  18. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Rob. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  19. Oh Kim, J., Kosla, P.K.: Real-time obstacle avoidance using harmonic potential functions. IEEE Trans. Robot. Autom. 8(3), 338–349 (1992)

    Article  Google Scholar 

  20. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Dordrecht, The Netherlands (1991)

    Book  Google Scholar 

  21. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, Massachusetts, USA (2006)

    Book  MATH  Google Scholar 

  22. Lozano-Pérez, T.: A simple motion-planing algorithm for general robot manipulators. IEEE Trans. Robot. Autom. RA-3(3), 224–238 (1987)

    Google Scholar 

  23. Ralli, E., Hirzinger, G.: Fast path planning for robot manipulators using numerical potential fields in the configuration space. In: Proc. IEEE Intelligent Robots and Systems, pp. 1922–1929. Munich, Germany (1994)

    Google Scholar 

  24. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  25. Sáncez, G., Latombe, J.C.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In: Jarvis, R., Zelinsky, A. (eds.) Robotics Research. Springer Tracts in Advanced Robotics, vol. 6, pp. 403–417. Springer Berlin / Heidelberg (2003)

  26. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, London, UK (2009)

    Google Scholar 

  27. Şucan, I.A., Kavraki, L.E.: Kinodynamic motion planning by interior-exterior cell exploration. In: Chirikjian, G., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol. 57, pp. 449–464. Springer Berlin / Heidelberg (2009)

  28. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin, Germany (1992)

    Book  MATH  Google Scholar 

  29. Zelek, J.S.: Dynamic path planning. In: Proc. IEEE Conference on Systems, Man and Cybernetics, pp. 1285–1290. Vancouver, British Columbia, Canada (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Facchinetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capisani, L.M., Facchinetti, T., Ferrara, A. et al. Obstacle Modelling Oriented to Safe Motion Planning and Control for Planar Rigid Robot Manipulators. J Intell Robot Syst 71, 159–178 (2013). https://doi.org/10.1007/s10846-012-9775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9775-5

Keywords

Navigation