Skip to main content
Log in

A Novel Robust Leader-Following Control Design for Mobile Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

To extend the utility of multiple mobile robots (MMRs) in formation on a larger scale, the algorithms developed for control of such robots must be robust. The majority of the developed controllers in the literature lack incorporating dynamics of the MMRs or lack robustness in their design. The very few recently developed robust controllers that consider dynamics, either rely on conservative assumptions to obtain robustness, or are sliding-mode based which suffer from the chattering problem. In this paper, (1) we consider both kinematics and dynamics as well as the actuator dynamics and their uncertainties in formulating the formation of non-holonomic MMRs, (2) we develop a novel robust control technique that can effectively handle the unknown parameters and uncertainties in the system, (3) unlike other papers, we relax the conservative assumptions to arrive at control design, and present rigorous mathematical analyses for the development of robust control and prove the system stability based on the Lyapunov theorem. Simulation results proved the effectiveness of the developed robust control method. It was concluded that the proposed control method, while not being conservative, is easy to use and can be readily adopted in real-time experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)

    Article  Google Scholar 

  2. Yang, J.-M., Kim, J.-H.: Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Robot. 15(3), 578–587 (1999)

    Article  MathSciNet  Google Scholar 

  3. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Neural Netw. 16(5), 609–615 (2000)

    Google Scholar 

  4. De Luca, A., Vendittelli, M.: WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Trans. Control Syst. Technol. 10(6), 835–852 (2002)

    Article  Google Scholar 

  5. Park, B.S., Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans. Control Syst. Technol. 17(1), 207–214 (2009)

    Article  Google Scholar 

  6. Dong, W., Kuhnert, K.-D.: Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties. IEEE Trans. Robot. 21(2), 261–266 (2005)

    Article  Google Scholar 

  7. Das, T., Kar, I.N.: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)

    Article  Google Scholar 

  8. Argall, B.D., Browning, B., Veloso, M.M.: Policy feedback for the refinement of learned motion control on a mobile robot. Springer: Int. J. Soc. Robot. 70, 417–432 (2012)

    Google Scholar 

  9. Chen, Y.Q., Wang, Z.: Formation control: a review and a new consideration. In: IEEE Proc. IROS, pp. 3181–3186. Edmonton, Canada (2005)

  10. Murray, R.M.: Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control 129(1), 571–582 (2007)

    Article  Google Scholar 

  11. Das, A.K., Fierro, R., Kumar V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  12. Hu, J., Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays. Elsevier. Physica A: Stat. Mech. & Apps. 374(2), 853–863 (2007)

    Article  Google Scholar 

  13. Consolinia, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Elsevier. Automatica 44(5), 1343–1349 (2008)

    Article  Google Scholar 

  14. Guo, J., Lin, Z., Cao, M., Yan, G.: Adaptive leader-follower formation control for autonomous mobile. In: IEEE Proc. American Ctrl. Conf., pp. 6822–6827. Baltimore, MD (2010)

  15. Ibuki, T., Hatanaka, T., Fujita, M., Spong, M.W.: Visual feedback leader following pose synchronization: convergence analysis. In: IEEE Proc. American Ctrl. Conf., pp. 493–498. San Francisco (2011)

  16. Luo, X., Nani, H., Xinping, G.: Leader-following consensus protocols for formation control of multi-agent network. IEEE J. Syst. Eng. Electron. 22(6), 991–997 (2011)

    Google Scholar 

  17. Wang, X., Ni, W., Wang, X.: Leader-following formation of switching leader-following formation of switching multirobot systems via internal model. IEEE Trans. Man. Syst. Cybern., Part B 42(3), 817–825 (2012)

    Article  Google Scholar 

  18. Sun, F., Chen, J., Guan, Z.-H., Ding, L., Li, T.: Leader-following finite-time consensus for multi-agent systems with jointly-reachable leader. Nonlinear Anal.: Real World Appl. 13(5), 2271–2284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Do, K.D., Lau, M.W.: Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges. J. Intell. Robot. Syst. 64(2), 245–275 (2011)

    Article  MATH  Google Scholar 

  20. Gao, Q., Pang, Y., Lv, D.H.: Optimized formation control for motor schema-based multiple robots. Adv. Int. Soft Computt. 125(2), 557–560 (2012)

    Article  Google Scholar 

  21. Chen, P.C.Y., Wan, J., Neow Poo, A., Ge, S.S.: Formation and zoning control of multi-robot systems. Int. J. Robot. Autom. 26(1), 35–48 (2011)

    MATH  Google Scholar 

  22. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 44(5), 1343–1349 (2008)

    Article  MathSciNet  Google Scholar 

  23. Park, B.S., Park, J.B., Choi, Y.H.: Robust formation control of electrically driven nonholonomic mobile robots via sliding mode technique. Int. J. Control Autom. Syst. 9(5), 888–894 (2011)

    Article  Google Scholar 

  24. Chang, Y.H., Chang, C.-W., Chen, C.-L., Tao, C.-W.: Fuzzy sliding-mode formation control for multirobot systems: design and implementation. IEEE. Trans. SMC Part B 42(2), 444–457 (2012)

    Google Scholar 

  25. Park, B.S., Park, J.B., Choi, Y.H.: Adaptive formation control of electrically driven nonholonomic mobile robots with limited information. IEEE. Trans. SMC Part B. 41(4), 1061–1075 (2011)

    MathSciNet  Google Scholar 

  26. Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W.: Sliding-mode formation control for cooperative autonomous mobile robots. IEEE Trans. Ind. Electron. 55(11), 3944–3953 (2008)

    Article  Google Scholar 

  27. Dong, W.: Robust formation control of multiple wheeled mobile robots. Int. J. Robot. Syst. 62(3–4), 547–565 (2011)

    Article  MATH  Google Scholar 

  28. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley (2006)

  29. Spong, M.W., Thorp, J.S., Kleinwaks, J.M.: The control of robot manipulators with bounded input part II: robustness and disturbance rejection. In: IEEE Proc. Decision. Control.. Las Vegas, NV (1984)

  30. Corless, M.J., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Automat. Contr. 26(5), 1139–1144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khalil, H.K.: Nonlinear Systems. Prentice Hall (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Biglarbegian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biglarbegian, M. A Novel Robust Leader-Following Control Design for Mobile Robots. J Intell Robot Syst 71, 391–402 (2013). https://doi.org/10.1007/s10846-012-9795-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9795-1

Keywords

Navigation