Skip to main content
Log in

Posture Stabilization Strategy for a Trotting Point-foot Quadruped Robot

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes a posture stabilization strategy for achieving the stable trot gait of a point-foot quadruped robot. Specifically, a stepping strategy (foot placement strategy) has been developed to achieve a stable trot gait. Because in the trot gait of a quadruped robot the diagonal legs can be considered to contact and leave the ground at the same time, the trot gait can be considered as a virtual biped gait. Based on the dynamic model of a virtual biped gait, the stepping point (or the foot placement) that achieves the stabilization of the robot is determined. Finally, the effectiveness of the proposed posture stabilization strategy is validated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ge, S.S., Li, Z., Yang, H.: Data driven adaptive predictive control for holonomic constrained under-actuated biped robots. IEEE Trans. Contr. Syst. Technol. 20(2), 787–795 (2012)

    Article  Google Scholar 

  2. Grizzle, J.W., Gabriel, A., Franck, P.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Automat. Contr. 46, 51–64 (2001)

    Article  MATH  Google Scholar 

  3. Hofmann, A.G.: Robust Execution of Bipedal Walking Tasks from Biomechanical Principles. MIT PhD thesis (2006)

  4. Kajita, S., Tani, K.: Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode. Proc. Int. Conf. Robot. Autom. 2, 1405–1411 (1991)

    Google Scholar 

  5. Kuo, A.D.: Stabilization of lateral motion in passive dynamic walking. Int. J. Rob. Res. 18(6), 917–930 (1999)

    Article  Google Scholar 

  6. Li, Z., Ge, S.S., Ming, A.: Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulator. IEEE Trans. Syst. Man Cybern. Part B 37(2), 607–616 (2007)

    Article  Google Scholar 

  7. Li, Z., Zhang, Y.: Robust adaptive motion/force control for wheeled inverted pendulums. Automatica 46, 1346–1353 (2010)

    Article  MATH  Google Scholar 

  8. Li, Z., Li, J., Kang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, Z., Zhu, Y., Mo, T.: Adaptive robust dynamic balance and motion control of mobile wheeled inverted pendulums. IEEE Trans. Contr. Syst. Technol. 17(1), 233–241 (2009)

    Article  Google Scholar 

  10. Playter, R., Buehler, M., Raibert, M.: BigDog, unmanned systems technology VIII. Proc. SPIE 6230, 62302O. doi:10.1117/12.684087 (2006)

    Article  Google Scholar 

  11. Pratt, J.E., Tedrake, R.: Velocity-based Stability Margins for Fast Bipedal. Springer (2006)

  12. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: International Conf. on Humanoid Robots, pp. 200–207. Genoa, Italy (2006)

  13. Raibert, H.: Legged Robots That Balance. MIT Press, Cambridge (1986)

    Google Scholar 

  14. Raibert, M.H.: Trotting, pacing and bounding by a quadruped robot. J. Biomech. 23(Suppl. 1), 79–98 (1990)

    Article  Google Scholar 

  15. Rebula, J., Pratt, J., Goswami, A.: Learning capture points for humanoid push recovery. Int. Conf. Human. Robot 23(1), 65–72 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baek-Kyu Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, JW., Lee, IH., Cho, BK. et al. Posture Stabilization Strategy for a Trotting Point-foot Quadruped Robot. J Intell Robot Syst 72, 325–341 (2013). https://doi.org/10.1007/s10846-012-9812-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9812-4

Keywords

Navigation