Skip to main content

Advertisement

Log in

Constraint-based Correspondence Matching for Stereo-based Interactive Robotic Massage Machine

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Locating the 3D positions of the points on the human back is an essential issue in stereo-based interactive robotic back massage machines. In stereoscopic 3D localization, the 3D positions are determined from the corresponding image points captured by calibrated stereo cameras. However, detecting these corresponding points on the human back is highly challenging due to the smooth and texture-less characteristics of human skin. In the present study, this problem is resolved by means of a novel correspondences detection scheme designated as Correspondences from Epipolar geometry and Contours via Triangle barycentric coordinates (CECT). In the proposed approach, reliable correspondences are extracted from the edge contours of the human back by applying epipolar geometry, and these correspondences are then used to compute the correspondences of the featureless points within the edge contour using a triangle barycentric coordinate approach. The accuracy and robustness of the estimated correspondences are ensured by applying three geometric constraints, namely a similarity constraint, a shape constraint and an epipolar constraint. The performance of the proposed approach is demonstrated by means of a series of experiments involving 28 subjects and four different testing conditions. In addition, the accuracy of the proposed localization scheme is evaluated by comparing the estimated 3D positions with those obtained using the cun-based measurement method in Traditional Chinese Medicine (TCM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kume, M., Morita Y., Yamauchi Y., Aoki H., Yamada, M., Tsukamoto, K.: Development of a mechanotherapy unit for examining the possibility of an intelligent massage robot. Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) 1, 346–353 (1996)

    Article  Google Scholar 

  2. Jones, K.C., Du, W.: Development of a massage robot for medical therapy. Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (AIM) 2, 1096–1101 (2003)

    Article  Google Scholar 

  3. Kang, C.G., Lee, B.J., Son, I.X., Kim, H.Y.: Design of a percussive massage robot tapping human backs. In: Proceedings of the 16th IEEE Int. Conf. Robot Human Interact. Commun. (RO-MAN), pp. 962–967 (2007)

  4. Koga, H., Usuda, Y., Matsuno, M., Ogura, Y., Ishii, H., Solis, J., Takanishi, A., Katsumata, A.: Development of oral rehabilitation robot for massage therapy. In: Proceedings of the 6th Int. Special Topic Conf. on Information Technology Applications in Biomedicine, pp. 111–114 (2007)

  5. Minyong, P., Miyoshi, T., Terachima, K., Kitagawa, H.: Expert massage motion control by multi-fingered robot hand. Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) 3, 3035–3040 (2003)

    Google Scholar 

  6. Tershima, K., Kitagawa, H., Miyoshi, T., Minyong, P., Kondo, T.: Modeling and massage control of human skin muscle by using multi-fingered robot hand. Integr. Comput.-Aided Eng. (ICAE) 13(3), 233–248 (2006)

    Google Scholar 

  7. Ma, J.Q., Song, A.G.: Development of a novel two-axis force sensor for Chinese massage robot. Appl. Mech. Mater. (AMM). 103, 299–304 (2011)

    Article  Google Scholar 

  8. Du, G.Y., Lu, S.Y., Zhang, H.K.: The realization of palm kneading for Chinese massage robot. Adv. Mater. Res. (AMR) 433–440, 2623–2628 (2012)

    Article  Google Scholar 

  9. Lai, L.C., Wu, C.J.: An active system for three-dimensional localization of mobile robots. J. Intell. Robot. Syst. 44(2), 123–137 (2005)

    Article  Google Scholar 

  10. Madhavan, R., Hong, T., Messina, E.: Temporal range registration for unmanned ground and aerial vehicles. J. Intell. Robot. Syst. 44(1), 47–69 (2005)

    Article  Google Scholar 

  11. Li, P., Cheng, J., Yuan, R., Zhao, W.: Robust 3D marker localization using multi-spectrum sequences. In: Proc. 5th Int. Symp. Adv. Vis. Comput. (ISVC) vol. 2, pp. 529–537 (2009)

  12. Wen, G., Wang, Z., Xia, S., Zhu, D.: From motion capture data to character animation. In: Proc. ACM Symp. Virtual Real. Softw. Technol. (VRST), pp. 165–168 (2006)

  13. Maruyama, K., Oka, K., Takase, R., Kawai, Y., Yoshimi, T., Takahashi, H., Tomitam, F.: 3D localization of partially buried object in unstructured environment. In: Proc. 19th Int. Conf. Pattern Recogn. (ICPR), pp. 1–4 (2008)

  14. Zhang, L., Subramaniam, N., Lin, R., Nayar, S.K., Raskar, R.: Capturing images with sparse informational pixels using projected 3D tags. In: Proc. IEEE Virtual Reality (2008)

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  16. Huang, C.R., Chen, C.S., Chung, P.C.: Contrast context histogram- an efficient discriminating local descriptor for object recognition and image matching. Pattern Recogn. 41, 3071–3077 (2008)

    Article  MATH  Google Scholar 

  17. Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University press (2004)

  18. Pilet, J., Lepetit, V., Fua, P.: Real-time non-rigid surface detection. IEEE Comput. Soc. Conf. Comp. Vis. Pattern Recog. (CVPR), vol. 1, pp. 822–828 (2005)

  19. Pilet, J., Lepetit, V., Fua, P.: Fast non-rigid surface detection, registration and realistic augmentation. Int. J. Comput. Vis. 76, 109–122 (2008)

    Article  Google Scholar 

  20. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  21. DeMenthon, D.: Model-based object pose in 25 lines of code. Int. J. Comp. Vis. 15(1–2), 123–141 (1995)

    Article  Google Scholar 

  22. Chai, D., Ngan, K.N.: Locating facial region of a head-and-shoulders color image. In Proceedings of the 3rd IEEE Int. Conf. Autom. Face Gesture Recognition, pp. 124 (1998)

  23. Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recogn. 40(3), 1106–1122 (2007)

    Article  MATH  Google Scholar 

  24. Gonzalez, R.C., Woods, R.E.: Digital image processing, 2nd edn. Prentice Hall (2002)

  25. Bradley, C.J.: The algebra of geometry: cartesian, projective and areal co-ordinates. Highperception Ltd. (2007)

  26. Aird, M., Cobbin, D.M., Rogers, C.: A study of the relative precision of acupoint location methods. J. Altern. Complem. Med. 8(5), 635–642 (2002)

    Article  Google Scholar 

  27. Yin, C.S., Park, H.J., Seo, J.C., Lim, S., Koh, H.G.: An evaluation of the cun measurement system of acupuncture point location. Am. J. Chinese Med. 33(5), 729–735 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau-Choo Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YC., Wu, CY. & Chung, PC. Constraint-based Correspondence Matching for Stereo-based Interactive Robotic Massage Machine. J Intell Robot Syst 72, 179–196 (2013). https://doi.org/10.1007/s10846-013-9831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9831-9

Keywords

Navigation