Skip to main content
Log in

Sensor-Based Motion Planning of Wheeled Mobile Robots in Unknown Dynamic Environments

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a new sensor-based online method for generating collision-free paths for differential-drive wheeled mobile robots pursuing a moving target amidst dynamic and static obstacles. At each iteration, the set of all collision-free directions are calculated using velocity vectors of the robot relative to each obstacle, forming the Directive Circle (DC), which is the fundamental concept of our proposed method. Then, the best feasible direction close to the optimal direction to the target is selected from the DC, which prevents the robot from being trapped in local minima. Local movements of the robot are governed by the exponential stabilizing control scheme that provides a smooth motion at each step, while considering the robot’s kinematic constraints. The robot is able to catch the target at a desired orientation. Extensive simulations demonstrated the efficiency of the proposed method and its success in coping with complex and highly dynamic environments with arbitrary obstacle shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Pub, Boston, MA (1991)

    Book  Google Scholar 

  2. Canny, J.: The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA (1988)

    Google Scholar 

  3. Canny, J., Reif, J.: New lower bound techniques for robot motion planning. In: Proceedings of IEEE Symposium on the Foundations of Computer Science, pp. 49–60. Los Angeles, CA (1987)

  4. Tsubouchi, T., Rude, M.: Motion planning for mobile robots in a time-varying environment. J. Robotics Mechatronics. 8(1), 15–24 (1996)

    Google Scholar 

  5. Du Toit, N.E., Burdick, J.W.: Robotic motion planning in dynamic, cluttered, uncertain environments. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 966–973 (2010)

  6. Petty, S., Fraichard, T.: Safe motion planning in dynamic environments. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2210–2215 (2005)

  7. Belkhouche, F.: Reactive path planning in a dynamic environment. In: Proceedings of IEEE Transactions on Robotics, vol. 25, no. 4, pp. 902–911 (2009)

  8. Liu, C.L., Tang, J., Yang, J.Y.: Path planning of mobile robot using new potential field method in dynamic environments. In: Seventh International Conference on Natural Computation (ICNC), vol. 2, pp. 1011–1014 (2011)

  9. Ishikawa, S.: A method of indoor mobile robot navigation by using fuzzy control. In: Proceedings of IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, vol. 2, pp. 1013–1018 (1991)

  10. Fiorini, P., Shiller, Z.: Motion planning in dynamic environment using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  11. van den Berg, J.P., Overmars, M.H.: Roadmap-based motion planning in dynamic environments. In: Proceedings of IEEE Int. Conf. on intelligent Robots and Systems, vol. 2, pp. 1598–1605 (2004)

  12. Inoue, K., Okawa, Y.: On-line motion planning of autonomous mobile robots to avoid multiple moving obstacles based on prediction of their future trajectories. J. Robotics Society Japan 15(2), 249–260 (1997)

    Article  Google Scholar 

  13. Minura, J., Uozumi, H., Shirai, Y.: Mobile robot motion planning considering the motion uncertainty of moving obstacles. In: Proceedings of IEEE Int. Conf. on Systems, Man, and Cybernetics, vol. 4, pp. 692–697 (1999)

  14. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. In: IEEE Robotics and Automation Magazine, vol. 4, no. 1, pp. 23–33 (1997)

  15. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion. MIT Press (2005)

  16. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

  17. Fulgenzi, C., Spalanzani, A., Laugier, C.: Dynamic obstacle avoidance in uncertain environment combining PVOS and occupancy grid. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1610–1616 (2007)

  18. Yang, S.X., Meng, M.: An efficient neural network method for real-time motion planning with safety consideration. J. Robotics and Autonomous Systems. 32, 115–128 (2000)

    Article  Google Scholar 

  19. Al-Khatib, M., Saade, J.J.: An efficient data-driven fuzzy approach to the motion planning problem of a mobile robot. J. Fuzzy Sets Systems 134, 65–82 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gal, O., Shiller, Z., Rimon, E.: Efficient and safe on-line motion planning in dynamic environments. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 88–93. Japan (2009)

  21. Fabiani, P., Gonzalez-Banos, H.H., Latombe, J.C., Lin, D.: Tracking an unpredictable target among occluding obstacles under localization uncertainties. J. Robotics Auton. Sys. 38, 31–48 (2002)

    Article  MATH  Google Scholar 

  22. Chunyu, J., Qu, Z., Pollak, E., Falash, M.: A new reactive target-tracking control with obstacle avoidance in a dynamic environment. In: American Control Conference, pp. 3872–3877. St. Louis, USA (2009)

  23. Ge, S.S., Cui, Y.J.: Dynamic motion planning for mobile robot using potential method. Auton. Robot. 13, 207–222 (2002)

    Article  MATH  Google Scholar 

  24. Huang, L.: Velocity planning for a mobile robot to track a moving target—a potential field approach. Robot. Auton. Syst. 57, 55–63 (2009)

    Article  Google Scholar 

  25. LaValle, S.M., Gonzalez-Banos, H.H., Becker, C., Latombe, J.C.: Motion strategies for maintaining visibility of a moving target. In: Proceedings of IEEE Int’l Conf. on Robotics and Automation, vol. 1, pp. 731–736 (1997)

  26. Kunwar, F., Wong, F., Ben Mrad, R., Benhabib, B.: Guidance-based online robot motion planning for the interception of mobile targets in dynamic environments. J. Intell. Robot. Syst. 47(4), 341–360 (2006)

    Article  Google Scholar 

  27. Jaradat, K., Garibeh, M.A., Mohammad, H., Feilat, E.A.: Dynamic motion planning for autonomous mobile robot using fuzzy potential field. In: Proceedings of Int. Symposium on Mechatronics and its Applications (ISMA09), pp. 1–6 (2009)

  28. Masehian, E., Katebi, Y.: Robot motion planning in dynamic environments with moving obstacles and target. International Journal of Aerospace and Mechanical Engineering 1(1), 20–251 (2007)

    Google Scholar 

  29. Pourboghrat, F.: Exponential stabilization of nonholonomic mobile robots. Comput. Electr. Eng. 28(5), 349–359 (2002)

    Article  MATH  Google Scholar 

  30. Patrick, H.L., Selzer, S.M., Warren, M.E.: Guidance laws for short-range tactical missiles. J. Guid. Control Dynam. 4(2), 98–108 (1981)

    Article  Google Scholar 

  31. Speyer, T.J., Kim, K., Tahk, M.: Passive homing missile guidance law based on new target maneuver models. J. Guid. Control. Dynam. 1(13), 803–812 (1990)

    Article  MathSciNet  Google Scholar 

  32. Shamos, M.I.: Computational geometry. Ph.D. dissertation, Yale University (1978)

  33. LaValle, S.M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical Report, TR 98-11, Computer Science Department, Iowa State University, USA (1998)

  34. Chattopadhyay, I., Ray, A.: Optimal path-planning under finite memory obstacle dynamics based on probabilistic finite state automata models. In: American Control Conference, pp. 2403–2408. St. Louis, USA (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellips Masehian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masehian, E., Katebi, Y. Sensor-Based Motion Planning of Wheeled Mobile Robots in Unknown Dynamic Environments. J Intell Robot Syst 74, 893–914 (2014). https://doi.org/10.1007/s10846-013-9837-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9837-3

Keywords

Navigation