Skip to main content

Advertisement

Log in

Integrated Mechanism Design and Control for Completely Restrained Hybrid-Driven Based Cable Parallel Manipulators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper deals with a methodology of simultaneous optimal design of mechanism and control for completely restrained hybrid-driven based cable parallel manipulators (HDCPM) in order to improve the dynamic performance of the HDCPM system. The HDCPM have the advantages of both the cable parallel manipulator and the hybrid-driven planar five-bar mechanism (HDPM). Kinematics and dynamics of the HDCPM are studied based on closed loop vector, geometric characteristic of mechanism and Lagrange method separately. Following that the integrated optimization model is established based on mechanics analysis and optimum control performance, and a genetic algorithm is used to carry out the optimization solution. As an example, separated optimization design and integrated optimization design for the completely restrained HDCPM with 3 Degrees of Freedom are comparatively investigated on the basis of the above design objectives. Simulation results illustrate that the dynamic performance of the HDCPM system can be significantly improved after integrated optimization design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luongo, A., Zulli, D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67(1), 71–87 (2012)

    Article  MathSciNet  Google Scholar 

  2. Cárdenas, R.A., Viramontes, F.J.C., González, A.D., Ruiz, G.H.: Analysis for the optimal location of cable damping systems on stayed bridges. Nonlinear Dyn. 52(4), 347–359 (2008)

    Article  MATH  Google Scholar 

  3. Alikhani, A., Behzadipour, S., Alasty, A., Vanini, S.A.S.: Design of a large-scale cable-driven robot with translational motion. Robot. Comput. Integr. Manuf. 27(2), 357–366 (2011)

    Article  Google Scholar 

  4. Zi, B., Zhu, Z.C., Du, J.L.: Analysis and control of the cable-supporting system including actuator dynamics. Control. Eng. Pract. 19(5), 491–501 (2011)

    Article  Google Scholar 

  5. Otis, M.J.-D., Perreault, S., Nguyen-Dang, T.-L., Lambert, P., Gouttefarde, M., Laurendeau, D., Gosselin, C.: Determination and management of cable interferences between two 6-DOF foot platforms in a cable-driven locomotion interface. IEEE Trans. Syst. Man Cybern. Syst. Hum. 39(3), 528–544 (2009)

    Article  Google Scholar 

  6. Shao, X.G., Zhu, Z.C., Wang, Q.G., Chen, P.C.Y., Zi, B., Cao, G.H.: Non-smooth dynamical analysis and experimental validation of the cable-suspended parallel manipulator. Proc. IME C J. Mech. Eng. Sci. (2012). doi:10.1177/0954406211435585

    Google Scholar 

  7. Duan, B.Y., Qiu, Y.Y., Zhang, F.S., Zi, B.: On design and experiment of the feed cable-suspended structure for super antenna. Mechatronics 19(4), 503–509 (2009)

    Article  Google Scholar 

  8. Pham, C.B., Yeo, S.H., Yang, G.L., Chen, I.-M.: Workspace analysis of fully restrained cable-driven manipulators. Robot. Auton. Syst. 57(9), 901–912 (2009)

    Article  Google Scholar 

  9. Lau, D., Oetomo, D., Halgamuge, S.K.: Wrench-closure workspace generation for cable driven parallel manipulators using a hybrid analytical-numerical approach. ASME J. Mech. Des. 133(7), 071004 (2011)

    Article  Google Scholar 

  10. Taniguchi, S., Kino, H., Ozawa, R., Ishibashi, R., Uemura, M., Kanaoka, K., Kawamura, S.: Inverse dynamics of human passive motion based on iterative learning control. IEEE Trans. Syst. Man Cybern. Syst. Hum. 42(2), 307–315 (2012)

    Article  Google Scholar 

  11. Lim, W.B., Yang, G., Yeo, S.H., Mustafa, S.K.: A generic force-closure analysis algorithm for cable-driven parallel manipulators. Mech. Mach. Theory 46(9), 1265–1275 (2011)

    Article  MATH  Google Scholar 

  12. Baser, O., Konukseven, E.I.: Theoretical and experimental determination of capstan drive slip error. Mech. Mach. Theory 45(6), 815–827 (2010)

    Article  MATH  Google Scholar 

  13. Kozak, K., Zhou, Q., Wang, J.: Static analysis of cable-driven manipulators with non-neglible cable mass. IEEE Trans. Robot. 22(3), 425–433 (2006)

    Article  Google Scholar 

  14. Fahham, H.R., Farid, M., Khooran, M.: Time optimal trajectory tracking of redundant planar cable-suspended robots considering both tension and velocity constraints. ASME J. Dyn. Syst. Meas. Control 133(1), 11004 (2011)

    Article  Google Scholar 

  15. Castelli, G., Ottaviano, E., González, A.: Analysis and simulation of a new Cartesian cable-suspended robot. Proc. IME C J. Mech. Eng. Sci. 224(8), 1717–1726 (2010)

    Article  Google Scholar 

  16. Gouttefarde, M., Daney, D., Merlet, J.-P.: Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots. IEEE Trans. Robot. 27(1), 1–13 (2011)

    Article  Google Scholar 

  17. Hassan, M., Khajepour, A.: Analysis of bounded cable tensions in cable-actuated parallel manipulators. IEEE Trans. Robot. 27(5), 891–900 (2011)

    Article  Google Scholar 

  18. Leila, N., Amin, K.: Inverse dynamics of wire-actuated parallel manipulators with a constrainting linkage. Mech. Mach. Theory 42(9), 1103–1118 (2007)

    Article  MATH  Google Scholar 

  19. Heyden, T., Woernle, C.: Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator. Multibody Syst. Dyn. 16(2), 155–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Oh, S.R., Agrawal, S.K.: Cable suspended planar robots with redundant cables: Controllers with positive tensions. IEEE Trans. Robot. 21(3), 457–465 (2005)

    Article  Google Scholar 

  21. Borgstrom, P.H., Borgstrom, N.P., Stealey, M.J., Jordan, B., Sukhatme, G.S., Batalin, M.A., Kaiser, W.J.: Design and implementation of NIMS3D, a 3-D cable robot for actuated sensing applications. IEEE Trans. Robot. 25(2), 325–338 (2009)

    Article  Google Scholar 

  22. Korayem, M.H., Tourajizadeh, H.: Maximum DLCC of spatial cable robot for a predefined trajectory within the workspace using closed loop optimal control approach. J. Intell. Robot. Syst. 63(1), 75–99 (2011)

    Article  Google Scholar 

  23. Gao, F., Liu, X.J., Gruver, W.A.: Performance evaluation of two-degree-of-freedom planar parallel robots. Mech. Mach. Theory 33(6), 661–668 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wu, J., Wang, J.S., Wang, L.P.: A comparison study of two planar 2-DOF parallel mechanisms: one with 2-RRR and the other with 3-RRR structures. Robotica 28(6), 937–942 (2010)

    Article  Google Scholar 

  25. Boscariol, P., Zanotto, V.: Design of a controller for trajectory tracking for compliant mechanisms with effective vibration suppression. Robotica 30(1), 15–29 (2012)

    Article  Google Scholar 

  26. Du, R., Guo, W.Z.: The design of a new metal forming press with controllable mechanism. ASME J. Mech. Des. 125(3), 582–592 (2003)

    Article  MathSciNet  Google Scholar 

  27. Cheng, L., Lin, Y., Hou, Z.G., Tan, M., Huang, J., Zhang, W.J.: Adaptive tracking control of hybrid machines: a closed-chain five-bar mechanism case. IEEE-ASME T. Mech. 16(6), 1155–1163 (2011)

    Article  Google Scholar 

  28. Zi, B., Cao, J.B., Zhu, Z.C.: Dynamic simulation of hybrid-driven planar five-bar parallel mechanism based on Simmechanics and tracking control. Int. J. Adv. Robot. Syst. 8(4), 28–33 (2011)

    Google Scholar 

  29. Wei, G.W., Dai, J.S.: Geometric and kinematic analysis of a seven-bar three-fixed-pivoted compound-joint mechanism. Mech. Mach. Theory 45(2), 170–184 (2010)

    Article  MATH  Google Scholar 

  30. Ouyang, P.R., Li, Q., Zhang, W.J., Guo, L.S.: Design, modeling and control of a hybrid machine system. Mechatronics 14(10), 1197–1217 (2004)

    Article  Google Scholar 

  31. Ding, H.F., Huang, P., Zi, B., Kecskeméthy, A.: Automatic synthesis of kinematic structures of mechanisms and robots especially for those with complex structures. Appl. Math. Model. (2012). doi:10.1016/j.apm.2012.01.043

    Google Scholar 

  32. Zi, B., Cao, J.B.: Workspace analysis of a hybrid-driven cable parallel mechanism. Appl. Mech. Mater. 66–68, 802–806 (2011)

    Article  Google Scholar 

  33. Fonseca, I.M., Bainum, P.M., Lourencao, P.T.M.: Structural and control optimization of a space structure subjected to the gravity-gradient torque. Acta Astronaut. 51(10), 673–681 (2002)

    Article  Google Scholar 

  34. Klein, J., Spencer, S., Allington, J., Bobrow, J.E., Reinkensmeyer, D.J.: Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Trans. Robot. 26(4), 710–715 (2010)

    Article  Google Scholar 

  35. Gamage, L.B., de Silva, C.W., Campos, R.: Design evolution of mechatronic systems through modeling, on-line monitoring, and evolutionary optimization. Mechatronics 22(1), 83–94 (2012)

    Article  Google Scholar 

  36. Zha, X.F.: Optimal pose trajectory planning for robot manipulators. Mech. Mach. Theory 37(10), 1063–1086 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Porfirio, C.R., Odloak, D.: Optimizing model predictive control of an industrial distillation column. Control. Eng. Pract. 19(10), 1137–1146 (2011)

    Article  Google Scholar 

  38. Canfield, R.A., Meirovitch, L.: Integrated structural design and vibration suppression using independent modal control. AIAA J. 32(10), 2053–2060 (1994)

    Article  MATH  Google Scholar 

  39. Zhang, W.J., Li, Q., Gou, L.S.: Integrated design of mechanical structure and control algorithm for a programmable four-bar linkage. IEEE-ASME T. Mech. 4(4), 354–362 (1999)

    Article  Google Scholar 

  40. Zhu, Y., Qiu, J.H., Tani, J.J., Urushiyama, Y., Hontani, Y.: Simultaneous optimization of structure and control for vibration suppression. ASME J. Vib. Acoust. 121(2), 237–243 (1999)

    Article  Google Scholar 

  41. Zhang, X.M.: Integrated optimal design of flexible mechanism and vibration control. Int. J. Mech. Sci. 46(11), 1607–1620 (2004)

    Article  MATH  Google Scholar 

  42. Yan, H.S., Yan, G.J.: Integrated control and mechanism design for the variable input-speed servo four-bar linkages. Mechatronics 19(2), 274–285 (2009)

    Article  Google Scholar 

  43. Gogate, G.R., Matekar, S.B.: Optimum synthesis of motion generating four-bar mechanisms using alternate error functions. Mech. Mach. Theory 54, 41–61 (2012)

    Article  Google Scholar 

  44. Kaveh, A., Rahami, H.: Nonlinear analysis and optimal design of structures via force method and genetic algorithm. Comput. Struct. 84(12), 770–778 (2006)

    Article  Google Scholar 

  45. Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Trans. Neural Netw. 5(1), 3–14 (1994)

    Article  Google Scholar 

  46. Masoud, Z.N., Nayfeh, A.H.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34(3–4), 347–358 (2003)

    Article  MATH  Google Scholar 

  47. Meza, J.L., Santibáñez, V., Soto, R., Llama, M.A.: Fuzzy self-tuning pid semiglobal regulator for robot manipulators. IEEE Trans. Ind. Electron. 59(6), 2709–2717 (2012)

    Article  Google Scholar 

  48. Khoury, G.M., Saad, M., Kanaan, H.Y., Asmar, C.: Fuzzy PID control of a five DOF robot arm. J. Intell. Robot. Syst. 40(3), 299–320 (2004)

    Article  Google Scholar 

  49. Godbolt, B., Vitzilaios, N.I., Lynch, A.F.: Experimental validation of a helicopter autopilot design using model-based PID control. J. Intell. Robot. Syst. 70(1–4), 385–399 (2013)

    Article  Google Scholar 

  50. Shiakolas, P.S., Koladiya, D., Kebrle, J.: On the optimum synthesis of six-bar linkages using differential evolution and the geometric centroid of precision positions technique. Mech. Mach. Theory 40(3), 319–335 (2005)

    Article  MATH  Google Scholar 

  51. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64, 759–768 (1942)

    Google Scholar 

  52. Loredo-Flores, A., Gonzalez-Galvan, E.J., Cervantes-Sanchez, J.J., Martinez-Soto, A.: Optimization of industrial, vision-based, intuitively generated robot point-allocating tasks using genetic algorithms. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(4), 600–608 (2008)

    Article  Google Scholar 

  53. Durillo, J.J., Nebro, A.J., Luna, F., Coello Coello, C.A., Alba, E.: Convergence speed in multi-objective metaheuristics: efficiency criteria and empirical study. Int. J. Numer. Methods Eng. 84(11), 1344–1375 (2010)

    Article  MATH  Google Scholar 

  54. Kelaiaia, R., Company, O., Zaatri, A.: Multiobjective optimization of a linear Delta parallel robot. Mech. Mach. Theory 50, 159–178 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zi, B., Ding, H., Cao, J. et al. Integrated Mechanism Design and Control for Completely Restrained Hybrid-Driven Based Cable Parallel Manipulators. J Intell Robot Syst 74, 643–661 (2014). https://doi.org/10.1007/s10846-013-9848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9848-0

Keywords

Navigation