Skip to main content
Log in

Improved 3D Interpolation-Based Path Planning for a Fixed-Wing Unmanned Aircraft

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Path planning for unmanned aircraft has attracted a remarkable amount of interest from the research community. However, planning in large environments such as the civil airspace has not been addressed extensively. In this paper we apply a heuristic incremental interpolation-based search algorithm with efficient replanning capabilities to the path planning problem for a fixed-wing aircraft operating in a natural environment to plan and re-plan long flight paths. We modified the algorithm to account for the minimum turning radius and the limited flight path angles of a fixed-wing aircraft. Additionally, we present a method to consider a desired minimum cruising altitude and a post-processing algorithm to improve the path and remove unnecessary path points. These properties specific to aircraft operation could not be addressed with the original algorithm. Simulation results show that the planner produces intuitive, short paths and is capable of exploiting previous planning efforts, when unknown obstacles are encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Casas, I., Malik, A., Delmelle, E., Karwan, M., Batta, R.. An automated network generation procedure for routing of unmanned aerial vehicles (UAVs) in a GIS environment. Netw. Spat. Econom. 7(2), 153–176 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hart, P.E., Nilsson, N.J., Raphael, B.: Formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  3. Wu, P., Campbell, D., Merz, T.: On-board multi-objective mission planning for unmanned aerial vehicles. In: Proc. of the IEEE Aerospace Conference, pp. 1–10. Big Sky, Montana (2009)

  4. Koenig, S., Likhachev, M.: D* lite. In: Proc. of the AAAI Conference on Artificial Intelligence, pp. 476–483. Edmonton, Canada (2002)

  5. Ferguson, D., Stentz, T.: Using interpolation to improve path planning: the field D* algorithm. J. Field Robot. 23(2), 79–101 (2006)

    Article  MATH  Google Scholar 

  6. Otte, M., Grudic, G.: Extracting paths from fields built with linear interpolation. In: Proc. of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’09), pp. 4406–4413. St. Louis, Missouri (2009)

  7. Carsten, J., Ferguson, D., Stentz, T.: 3D field D*: improved path planning and replanning in three dimensions. In: Proc. of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’06), pp. 3381–3386. Beijing (2006)

  8. Nash, A., Koenig, S., Tovey, C.: Lazy Theta*: any-angle path planning and path length analysis in 3D. In: Proc. of the AAAI Conference on Artificial Intelligence, pp. 147–154. Atlanta, Georgia (2010)

  9. Garcia, M., Viguria, A., Ollero, A.: Dynamic graph-search algorithm for global path planning in presence of hazardous weather. J. Intell. Robot. Syst. 69(1–4), 285–295 (2013)

    Google Scholar 

  10. Gros, M., Niendorf, M., Schoettl, A., Fichter, W.: Motion planning for a fixed-wing MAV Incorporating closed-loop dynamics motion primitives and safety maneuvers. In: Advances in Aerospace Guidance, Naviagation and Control—Selected Papers of the 1st CEAS Specialist Conference on Guidance, Navigation and Control, pp. 247–260 (2011)

  11. Adolf, F.-M., Andert, F.: Rapid multi-query path planning for a vertical take-off and landing unmanned aerial vehicle. AIAA Journal of Aerospace Information Systems 8, 310–327 (2011)

    Article  Google Scholar 

  12. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 57(1–4), 65–100 (2010)

    Article  MATH  Google Scholar 

  13. NASA Jet Propulsion Laboratory: Shuttle radar topography mission. Available http://www2.jpl.nasa.gov/srtm (2011)

  14. Shankel, J.: Fractal terrain generation—midpoint displacement. In: DeLoura, M. (ed.) Gems, pp. 503–507. Hingham: Charles River Media, Inc. (2000)

    Google Scholar 

  15. Klein, J.: Erweiterung eines 3D-Field-D*-Pfadplanungsalgorithmus, Erzeugung einer 4D-Route und Integration eines Routenmanagements fuer ein easy handling system fuer Flugzeuge der general aviation. Diploma thesis, Institute of Aircraft Systems, Universitaet Stuttgart, Stuttgart, Germany (2012)

  16. Heudorfer, K.: Erweiterung und Dokumentation eines 4D-Pfadplanungsalgorithmus und eines Routenmanagements fuer ein easy handling system fuer Flugzeuge der general aviation. Diploma thesis, Institute of Aircraft Systems, Universitaet Stuttgart, Stuttgart, Germany (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Altmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altmann, A., Niendorf, M., Bednar, M. et al. Improved 3D Interpolation-Based Path Planning for a Fixed-Wing Unmanned Aircraft. J Intell Robot Syst 76, 185–197 (2014). https://doi.org/10.1007/s10846-013-9851-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9851-5

Keywords

Navigation