Skip to main content
Log in

Nonlinear Trajectory Control of Multi-body Aerial Manipulators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper studies trajectory control of aerial vehicles equipped with robotic manipulators. The proposed approach employs free-flying multi-body dynamics modeling and backstepping control to develop stabilizing control laws for a class of underactuated aerial systems. Two control methods are developed: coordinate-based and coordinate-free which are both generally applicable to aerial manipulation tasks. A simulated hexrotor vehicle equipped with a simple manipulator is employed to demonstrate the proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pounds, P., Bersak, D., Dollar, A.: The yale aerial manipulator: grasping in flight. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2974–2975 (2011)

  2. Pounds, P.E.I., Bersak, D.R., Dollar, A.M.: Stability of small-scale uav helicopters and quadrotors with added payload mass under pid control. Auton. Robot. 33(1–2), 129–142 (2012)

    Article  Google Scholar 

  3. Lindsey, Q.J., Mellinger, D., Kumar, V.: Construction of cubic structures with quadrotor teams. Auton. Robot. 33(3), 323–336 (2012). doi:10.1007/s10514-012-9305-0

    Google Scholar 

  4. Hehn, M., D’Andrea, R.: A flying inverted pendulum. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 763–770 (2011)

  5. Korpela, C.M., Danko, T.W., Oh, P.Y.: Mm-uav: mobile manipulating unmanned aerial vehicle. J. Intell. Robot. Syst. 65(1–4), 93–101 (2012). Online, Available: doi:10.1007/s10846-011-9591-3

    Article  Google Scholar 

  6. Korpela, C., Orsag, M., Danko, T., Kobe, B., McNeil, C., Pisch, R., Oh, P.: Flight stability in aerial redundant manipulators. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3529–3530 (2012)

  7. Korpela, C., Danko, T., Oh, P.: Designing a system for mobile manipulation from an unmanned aerial vehicle. In: 2011 IEEE Conference on Technologies for Practical Robot Applications (TePRA), pp. 109–114 (2011)

  8. Innovative Aerial Service Robots for Remote Inspection by Contact (Airobots). http://airobots.ing.unibo.it. Accessed 1 Dec 2012

  9. Aerial Robotics Cooperative Assembly System (ARCAS). http://www.arcas-project.eu. Accessed 1 Dec 2012

  10. Fusata, D., Guglieri, G., Celi, R.: Flight dynamics of an articulated rotor helicopter with an external slung load. American Helicopter Society 46(1), 3–14 (2001)

    Article  Google Scholar 

  11. Maza, I., Kondak, K., Bernard, M., Ollero, A.: Multi-uav cooperation and control for load transportation and deployment. J. Intell. Robot. Syst. 57(1–4), 417–449 (2010). Online, Available: doi:10.1007/s10846-009-9352-8

    Article  MATH  Google Scholar 

  12. Thomas, J., Polin, J., Sreenath, K., Kumar, V.: Avian-inspired grasping for quadrotor micro UAVS. In: ASME International Design Engineering Technical Conference (IDETC), Portland, Oregon, August 2013

  13. Torre, A., Mengoli, D., Naldi, R., Forte, F., Macchelli, A., Marconi, L.: A prototype of aerial manipulator. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2653–2654 (2012)

  14. Mersha, A., Stramigioli, S., Carloni, R.: Bilateral teleoperation of underactuated unmanned aerial vehicles: the virtual slave concept. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4614–4620 (2012)

  15. Orsag, M., Korpela, C., Pekala, M., Oh, P.: Stability control in aerial manipulation. In: American Control Conference (ACC), 2013, pp. 5581–5586 (2013)

  16. Jimenez-Cano, A., Martin, J., Heredia, G., Cano, R., Ollero, A.: Control of an aerial robot with multi-link arm for assembly tasks. In: International Conference on Robotics and Automation (2013)

  17. Koo, T., Sastry, S.: Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th IEEE Conference on Decision and Control, 1998, vol. 4, pp. 3635–3640 (1998)

  18. Frazzoli, E., Dahleh, M., Feron, E.: Trajectory tracking control design for autonomous helicopters using a backstepping algorithm. In: Proceedings of the 2000 American Control Conference, 2000, vol. 6, pp. 4102–4107 (2000)

  19. Mahony, R., Hamel, T.: Robust trajectory tracking for a scale model autonomous helicopter. International Journal of Robust and Nonlinear Control 14(12), 1035–1059 (2004). Online, Available: doi:10.1002/rnc.931

    Article  MATH  MathSciNet  Google Scholar 

  20. Dubowsky, S., Papadopoulos, E.: The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans. Robot. Autom. 9(5), 531–543 (1993)

    Article  Google Scholar 

  21. Mukherjee, R., Chen, D.: Control of free-flying underactuated space manipulators to equilibrium manifolds. IEEE Trans. Robot. Autom. 9(5), 561–570 (1993)

    Article  Google Scholar 

  22. Jain, A.: Robot and Multibody Dynamics: Analysis and Algorithms. Springer (2011)

  23. Spong, M.W.: Underactuated mechanical systems. In: Control Problems in Robotics and Automation. Springer-Verlag (1998)

  24. Descusse, J., Moog, C.H.: Dynamic decoupling for right-invertible nonlinear systems. Syst. Control Lett. 8(4), 345–349 (1987). Online, Available: doi:10.1016/0167-6911(87)90101-0

    Article  MATH  MathSciNet  Google Scholar 

  25. Hauser, J., Sastry, S., Meyer, G.: Nonlinear control design for slightly non-minimum phase systems: application to v/stol aircraft. Automatica 28(4), 665–679 (1992). Online, Available: http://www.sciencedirect.com/science/article/pii/000510989290029F

    Article  MATH  MathSciNet  Google Scholar 

  26. Altug, E., Ostrowski, J.P., Mahony, R.E.: Control of a quadrotor helicopter using visual feedback. In: International Conference on Robotics and Automation, pp. 72–77 (2002)

  27. Al-Hiddabi, S.: Quadrotor control using feedback linearization with dynamic extension. In: 6th International Symposium on Mechatronics and its Applications, 2009. ISMA ’09, pp. 1 –3 (2009)

  28. Lee, D., Jin Kim, H., Sastry, S.: Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. Syst. 7, 419–428 (2009). Online, Available: doi:10.1007/s12555-009-0311-8

    Article  Google Scholar 

  29. Bouabdallah, S., Siegwart, R.: Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp. 2247–2252 (2005)

  30. Madani, T., Benallegue, A.: Control of a quadrotor mini-helicopter via full state backstepping technique. In: 2006 45th IEEE Conference on Decision and Control, pp. 1515–1520 (2006)

  31. Adigbli, P., Grand, C., baptiste Mouret, J., Doncieux, S.: Nonlinear attitude and position control of a micro quadrotor using sliding mode and backstepping techniques. In: European Micro Air Vehicle Conference and Flight Competition (EMAV2007) (2007)

  32. Raffo, G., Ortega, M., Rubio, F.: Backstepping/nonlinear h-infty control for path tracking of a quadrotor unmanned aerial vehicle. In: American Control Conference, 2008, pp. 3356–3361 (2008)

  33. Colorado, J., Barrientos, A., Martinez, A., Lafaverges, B., Valente, J.: Mini-quadrotor attitude control based on hybrid backstepping amp; frenet-serret theory. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1617–1622 (2010)

  34. Choi, I.-H., Bang, H.-C.: Adaptive command filtered backstepping tracking controller design for quadrotor unmanned aerial vehicle. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 226(5), 483–497 (2012). Online, Available: http://pig.sagepub.com/content/226/5/483.abstract

    Article  Google Scholar 

  35. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. dissertation, Massachusetts Institute of Technology, aAI0803036 (2001)

  36. Lee, T., Leok, M., McClamroch, N.: Geometric tracking control of a quadrotor uav on se(3). In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 5420–5425 (2010)

  37. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC (1994)

  38. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer (2008)

  39. Slotine, J.J.E., Li, W.A.: Applied Nonlinear Control. Prentice Hall (1991)

  40. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer (1999)

  41. Bullo, F., Lewis, A.: Geometric Control of Mechanical Systems. Springer (2004)

  42. Tsiotras, P.: Higher order cayley transforms with applications to attitude representations. J. Guid. Control Dyn. 20(3), 528–534 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Kobilarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobilarov, M. Nonlinear Trajectory Control of Multi-body Aerial Manipulators. J Intell Robot Syst 73, 679–692 (2014). https://doi.org/10.1007/s10846-013-9934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9934-3

Keywords

Navigation