Skip to main content
Log in

Hybrid Adaptive Control for Aerial Manipulation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a control scheme to achieve dynamic stability in a mobile manipulating unmanned aerial vehicle (MM-UAV) using a combination of Gain scheduling and Lyapunov based model reference adaptive control (MRAC). Our test flight results indicate that we can accurately model and control our aerial vehicle when both moving the manipulators and interacting with target objects. Using the Lyapunov stability theory, the controller is proven to be stable. The simulation results showed how the MRAC is capable of stabilizing the oscillations produced from the unstable PI-D attitude control loop. Finally a high level control system based on a switching automaton is proposed in order to ensure the saftey of the aerial manipulation missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicol, C., Macnab, C., Ramirez-Serrano, A.: Robust adaptive control of a quadrotor helicopter. Mechatronics 21(6), 927–938 (2011)

    Article  Google Scholar 

  2. Palunko, I., Fierro, R.: Adaptive feedback controller design and quadrotor modeling under dynamic changes of the center of gravity. In: 18th IFACWorld Congress (IFAC WC 2011), Milan, Italy, 28 Aug–2 Sept, 2011

  3. Åström, K., Wittenmark, B.: Adaptive Control. Ser. Addison-Wesley Series in Electrical Engineering. Addison-Wesley (1995)

  4. Landau, I.: Adaptive Control. Ser. Communications and Control Engineering. Springer, London (2011)

    Book  MATH  Google Scholar 

  5. Butler, H.: Model reference adaptive control: from theory to practice. Ser. Prentice Hall International Series in Systems and Control Engineering. Prentice Hall (1992)

  6. Kovacic, Z., Bogdan, S., Puncec, M.: Adaptive control based on sensitivity model-based adaptation of lead-lag compensator parameters. In: 2003 IEEE International Conference on Industrial Technology, vol. 1, pp. 321–326 (2003)

  7. Bellens, S., De Schutter, J., Bruyninckx, H.: A hybrid pose/wrench control framework for quadrotor helicopters. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 2269–2274 (2012)

  8. Marconi, L., Naldi, R.: Control of aerial robots: hybrid force and position feedback for a ducted fan. IEEE Control. Syst. 32(4), 43–65 (2012). doi:10.1109/MCS.2012.2194841

    Article  MathSciNet  Google Scholar 

  9. Lorenzo, M., Roberto, N., Gentili, L.: Modelling and control of a flying robot interacting with the environment. Automatica 47(12), 2571–2583 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28(6), 914–931 (2011)

    Article  Google Scholar 

  11. Bisgaard, M., la Cour-Harbo, A., Bendtsen, J.: Adaptive control system for autonomous helicopter slung load operations. Control Eng. Pract. 18(7), 800–811 (2010)

    Article  Google Scholar 

  12. Palunko, I., Fierro, R., Cruz, P.: Trajectory generation for swing-free maneuvers of a quadrotor with suspended payload: a dynamic programming approach. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 2691–2697 (2012)

  13. Sandino, L., Bejar, M., Kondak, K., Ollero, A.: On the use of tethered configurations for augmenting hovering stability in small-size autonomous helicopters. J. Intell. Robot. Syst. 1–17 (2012). Online, Available: doi:10.1007/s10846-012-9741-2

  14. Pounds, P., Bersak, D., Dollar, A.: The yale aerial manipulator: grasping in flight. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2974–2975 (2011)

  15. Pounds, P.E.I., Bersak, D.R., Dollar, A.M.: Grasping from the air: hovering capture and load stability. In: Proc. IEEE Int Robotics and Automation (ICRA) Conf, pp. 2491–2498 (2011)

  16. Pounds, P., Bersak, D., Dollar, A.: Stability of small-scale uav helicopters and quadrotors with added payload mass under pid control. Auton. Robot. 33, 129–142 (2012)

    Article  Google Scholar 

  17. Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In: Proc. IEEE/RSJ Int Intelligent Robots and Systems (IROS) Conf, pp. 2668–2673 (2011)

  18. Mellinger, D., Shomin, M., Michael, N., Kumar, V.: Cooperative grasping and transport using multiple quadrotors. In: Proceedings of the International Symposium on Distributed Autonomous Robotic Systems (2010)

  19. Lindsey, Q.J., Mellinger, D., Kumar, V.: Construction of cubic structures with quadrotor teams. Robotics: Science and Systems (2011)

  20. Orsag, M., Korpela, C., Oh, P.: Modeling and control of MM-UAV: mobile manipulating unmanned aerial vehicle. In: Proc. International Conference on Unmanned Aircraft Systems, ICUAS (2012)

  21. McMillan, S., Orin, D.E., McGhee, R.B.: Efficient dynamic simulation of an underwater vehicle with a robotic manipulator. IEEE Trans. Syst. Man Cybern. 25, 1194–1206 (1995)

    Article  Google Scholar 

  22. Corke, P.: A robotics toolbox for MATLAB. IEEE Robot. Autom. Mag. 3(1), 24–32 (1996)

    Article  Google Scholar 

  23. Jazar, R.: Theory of Applied Robotics: Kinematics, Dynamics, and Control, 2nd edn. Springer (2010)

  24. Hahn, H.: Rigid Body Dynamics of Mechanisms: Theoretical Basis. Ser. Rigid Body Dynamics of Mechanisms. Springer (2002)

  25. Orsag, M., Korpela, C., Pekala, M., Oh, P.: Stability control in aerial manipulation. In: American Control Conference (ACC), 2013, pp. 5581–5586 (2013)

  26. Korpela, C., Orsag, M., Pekala, M., Oh, P.: Dynamic stability of a mobile manipulating unmanned aerial vehicle. In: Proc. IEEE Int Robotics and Automation (ICRA) Conf (2013)

  27. Miskovic, N., Vukic, Z., Bibuli, M., Caccia, M., Bruzzone, G.: Marine vehicles’ line following controller tuning through self-oscillation experiments. In: Proceedings of the 2009 17th Mediterranean Conference on Control and Automation, ser. MED ’09, pp. 916–921. IEEE Computer Society, Washington, DC (2009)

  28. Masubuchi, I., Kato, J., Saeki, M., Ohara, A.: Gain-scheduled controller design based on descriptor representation of lpv systems: application to flight vehicle control. In: 43rd IEEE Conference on Decision and Control, 2004, CDC, vol. 1, pp. 815–820 (2004)

  29. Nichols, R., Reichert, R., Rugh, W.: Gain scheduling for h-infinity controllers: a flight control example. IEEE Trans. Control Syst. Technol. 1(2), 69–79 (1993)

    Article  Google Scholar 

  30. Boskovic, J., Mehra, R.: Multi-mode switching in flight control. In: The 19th Digital Avionics Systems Conference, 2000. Proceedings. DASC., vol. 2, pp. 6F2/1–6F2/8 (2000)

  31. Corke, P.I.: Robotics, Vision & Control: Fundamental Algorithms in Matlab. Springer (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matko Orsag.

Additional information

This material is based on research sponsored by the Air Force Research Laboratory, under agreement number FA8655-13-1-3055. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the U.S. Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orsag, M., Korpela, C.M., Bogdan, S. et al. Hybrid Adaptive Control for Aerial Manipulation. J Intell Robot Syst 73, 693–707 (2014). https://doi.org/10.1007/s10846-013-9936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9936-1

Keywords

Navigation