Skip to main content
Log in

A New Nonlinear Controller for Trajectory Tracking of the Longitudinal Dynamics of a Small Scale Helicopter

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A nonlinear control scheme is proposed for the trajectory tracking problem of a small scale helicopter’s longitudinal dynamics. The control scheme is based on a control design procedure that constructs static feedback regulators for nonlinear systems which are linearizable by dynamic feedback. Besides, the flatness characteristics of the helicopter’s longitudinal dynamics are used to design the desired trajectory. The controller proposed is based on the longitudinal model of the small scale helicopter including the main rotor and stabilizer bar dynamics. Sufficient conditions are given to guarantee asymptotic convergence to zero of the tracking error and to keep the main rotor thrust always negative assuming that all the helicopter’s parameters are known and that all helicopter’s states are measured. Numerical simulations are given to show the performance of the controller in the presence of the main rotor and stabilizer bar dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benítez-Morales, J.G., Rodríguez-Córtes, H., Castro-Linares R.: Nonlinear Control for the Longitudinal Dynamics of a Small Scale Helicopter. European Control Conference (2013)

  2. Bhandari, S., Colgren, R.: 14-DoF Linear Parameter Varying Model of a UAV Helicopter using Analytical Techniques. American Institute of Aeronautics and Astronautics Modeling and Simulation Conference and Exhibit (2008)

  3. Cai, G., Feng, L., Chen, B.M., Lee, T.H.: Systematic design methodology and construction of UAV helicopters. Mechatronics 18, 545–558 (2008)

    Article  Google Scholar 

  4. Fahimi, F., Saffarian, M.: The control point concept for nonlinear trajectory-tracking control of autonomous helicopter with fly-bar. Int. J. Control 84(2), 242–252 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fantoni, I., Lozano, R.: Non-linear Control for Underactuated Mechanical Systems, chap. 15. Springer, Great Britain (2002)

    Book  Google Scholar 

  6. Kaliora, G., Astolfi, A.: Nonlinear control of feedforward systems with bounded signals. IEEE Trans. Autom. Control 49, 1975–1990 (2004)

    Article  MathSciNet  Google Scholar 

  7. Koo, T.J., Sastry, S.: Output Tracking Control Design of a Helicopter Model Based on Approximate Linearization. IEEE Conference on Decision and Control (1998)

  8. Kuipers, J.B.: Quaternions and Rotation Sequences, A Primer with Application to Orbits, Aerospace, and Virtual Reality. Princeton University Press, Princeton (1999)

    Google Scholar 

  9. Layton, D.M.: Helicopter Performance. Matrix Publisher, Inc. (1984)

  10. Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Control of Robot Manipulators, pp. 15. Macmillan Publishing Company (1993)

  11. Martin, P., Devasia, S., Paden, B.: A different look at output tracking control of a VTOL aircraft. Automatica 32, 101–107 (1996)

    Article  MATH  Google Scholar 

  12. Ollero, A., Hommel, G., Gancet, J., Gutierrez, L.G., Viegas, D.X., Wiklund, J., Gonzáles, M.A.: COMETS: a multiple heterogeneous UAV system. In: IEEE International Workshop on Safety, Security, and Rescue Robotics. ISBN: 3-8167-6556-4 (2004)

  13. Raptis, A., Valavanis, K.P.: Linear and Nonlinear Control of Small-Scale Unmanned Helicopter. Springer, New York (2010)

    Google Scholar 

  14. Raptis, A., Valavanis, K.P., Moreno, W.A.: Nonlinear backstepping control design for miniature helicopter using the rotation matrix. In: 17th Mediterranean Conference on Control & Automation (2009)

  15. Rodríguez, H., Astolfi, A., Ortega, R.: On the construction of static stabilizer and static output trackers for dynamically linearizable systems, related results and applications. Int. J. Control. 79, 1523–1537 (2006)

    Article  MATH  Google Scholar 

  16. Rugh, W.J.: Linear System Theory, pp. 134–135. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  17. Sira-Ramírez, H., Castro-Linares, R., Licéaga-Castro, E.: A Liouvillian systems approach for the trajectory planning-based control of the helicopter models. International Journal of Robust and Nonlinear Control 37, 1239–1245 (2000)

    Google Scholar 

  18. Song, B., Mills, J.K., Huanh, H., Liu, Y., Fan, C.: Nonlinear robust control of a small-scale helicopter on a test bench. Int. J. Control. 83(4), 761–775 (2010)

    Article  MATH  Google Scholar 

  19. Thomson, T.W.: Introduction to Space Dynamics. Dover Publications, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Benítez-Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benítez-Morales, J.G., Rodríguez-Cortés, H. & Castro-Linares, R. A New Nonlinear Controller for Trajectory Tracking of the Longitudinal Dynamics of a Small Scale Helicopter. J Intell Robot Syst 73, 99–121 (2014). https://doi.org/10.1007/s10846-013-9971-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9971-y

Keywords

Navigation