Skip to main content
Log in

A HIL Testbed for Initial Controller Gain Tuning of a Small Unmanned Helicopter

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A Hardware-In-The-Loop (HIL) testbed design for small unmanned helicopters which provides a safe and low-cost platform to implement control algorithms and tune the control gains in a controlled environment is described. Specifically, it allows for testing the robustness of the controller to external disturbances by emulating the hover condition. A 6-DOF nonlinear mathematical model of the helicopter has been validated in real flight tests. This model is implemented in real-time to estimate the states of the helicopter which are then used to determine the actual control signals on the testbed. Experiments of the longitudinal, lateral and heading control tests are performed. To minimize the structural stress on the fuselage in case of controller failure or a subsystem malfunction, a damping system with a negligible parasitic effect on the dynamics of the helicopter around hover is incorporated. The HIL testbed is capable of testing the helicopter in hover, as well as on any smooth trajectories such as cruise flight, figure-8, etc. Experimentally tuning the controller on the HIL testbed is described and results in a controller which is robust to the external disturbances, and achieves an accuracy of ±2.5 cm in the position control on the longitudinal and lateral trajectory tracking, and ±5 deg accuracy around the yaw axis on the heading trajectory tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merino, L., Caballero, F., Martínez-de Dios, J., Maza, I., Ollero, A.: An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 65, 533–548 (2012)

    Article  Google Scholar 

  2. Casbeer, D., Beard, R., McLain, T., Li, S.-M., Mehra, R.: Forest fire monitoring with multiple small UAVs. In: ACC, vol. 5, pp. 3530–3535 (2005)

  3. Li, Z., Liu, Y., Walker, R.A., Hayward, R.F., Zhang, J.: Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved hough transform. Mach. Vis. Appl. 21(5), 677–686 (2009)

    Article  Google Scholar 

  4. Marinho, C.A., de Souza, C., Motomura, T., da Silva, A.G.: In-service flare inspection by unmanned aerial vehicles (UAVs). In: 18th World Conference on Nondestructive Testing. Durban, South Africa (2012)

  5. Haarbrink, R., Eisenbeiss, H.: Accurate DSM production from unmanned helicopter systems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37, 1259–1264 (2008)

    Google Scholar 

  6. Gundlach, J.: Designing Unmanned Aircaft Systems: A comprehensive Approach, 1st ed. 1801 Alexander Bell Drive, Reston, Virginia 20191-4344, USA: American Istitute of Aeronautics and Astronautics, Inc (2012)

  7. Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B., Su, C.-Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC, techniques with application to an unmanned quadrotor helicopter testbed. J. Franklin Inst. 350(9), 2396–2422 (2013)

    Article  Google Scholar 

  8. Green, W., Oh, P.: Autonomous hovering of a fixed-wing micro air vehicle. In: ICRA, pp. 2164–2169 (2006)

  9. Oh, H., Won, D.-Y., Huh, S.-S., Shim, D., Tahk, M.-J., Tsourdos, A.: Indoor UAV control using multi-camera visual feedback. J. Intell. Robot. Syst. 61, 57–84 (2011)

    Article  Google Scholar 

  10. García Carrillo, L., Rondon, E., Sanchez, A., Dzul, A., Lozano, R.: Stabilization and trajectory tracking of a quad-rotor using vision. J. Intell. Robot. Syst. 61, 103–118 (2011)

    Article  Google Scholar 

  11. Mellado-Bataller, I., Pestana, J., Olivares-Mendez, M., Campoy, P., Mejias, L.: MAV work: a framework for unified interfacing between micro aerial vehicles and visual controllers. In: Frontiers of Intelligent Autonomous Systems, ser. Studies in Computational Intelligence, vol. 466, pp. 165–179. Springer Berlin Heidelberg (2013)

  12. Chamseddine, A., Zhang, Y., Rabbath, C., Join, C., Theilliol, D.: Flatness-based trajectory planning/replanning for a quadrotor unmanned aerial vehicle. IEEE Trans. Aerospace Electron. Syst. 48(4), 2832–2848 (2012)

    Article  Google Scholar 

  13. Chao, H., Cao, Y., Chen, Y.: Autopilots for small unmanned aerial vehicles: a survey. Int. J. Control Autom. Syst. 8, 36–44 (2010)

    Article  Google Scholar 

  14. Guowei, C., Biao, W., Chen, B., Lee, T.: Design and implementation of a flight control system for an unmanned rotorcraft using RPT control approach. In: 30th Chinese Control Conference (CCC), pp. 6492–6497 (2011)

  15. Castillo, C., Moreno, W., Valavanis, K.: Unmanned helicopter waypoint trajectory tracking using model predictive control. In: Mediterranean Conference on Control Automation, pp. 1–8 (2007)

  16. Garcia, R.D., Valavanis, K.P.: The implementation of an autonomous helicopter testbed. J. Intell. Robot. Syst. 54(1–3), 423–454 (2009)

    Article  Google Scholar 

  17. Kim, H., Shim, D.H.: A flight control system for aerial robots: algorithms and experiments. Control Eng. Pract. 11(12), 1389–1400 (2003)

    Article  Google Scholar 

  18. Khaligh, S.P., Fahimi, F., Saffarian, M.: Comprehensive aerodynamic modeling of a small autonomous helicopter rotor at all flight regimes. In: AIAA Modeling and Simulation Technologies Conference, pp. 1–10. Chicago, Illinois, United States (2009)

  19. Tanaka, K., Ohtake, H., Wang, H.O.: A practical approach to stabilization of a 3-DOF RC helicopter. IEEE Control Syst. Technol. 12(2), 315–325 (2004)

    Article  Google Scholar 

  20. Kutay, A.T., Calise, A.J., Idan, M., Hovakimyan, N.: Experimental results on adaptive output feedback control using a laboratory model helicopter. IEEE Control Syst. Technol. 13(2), 196–202 (2005)

    Article  Google Scholar 

  21. Andrievsky, B., Peaucelle, D., Fradkov, A.L.: Adaptive control of 3-DOF motion for LAAS helicopters benchmark: design and experiments. In: ACC, pp. 3312–3317 (2007)

  22. Q.C. Inc.: [Online] Available: http://www.quanser.com (2013). Accessed 5 Mar 2013

  23. Montgomery, J.F., Johnson, A.E., Romeliotis, S.I., Matthies, L.H.: The jet propulsion laboratory autonomous helicopter testbed: a platform for planetary exploration technology research and development. J. Field Robot. 23(3–4), 245–267 (2006)

    Article  Google Scholar 

  24. Vitzilaios, N., Tsourveloudis, N.: An experimental test bed for small unmanned helicopters. J. Intell. Robot. Syst. 54, 769–794 (2009)

    Article  Google Scholar 

  25. Whiteman, R.: Training apparatus for remote control model helicopters. U.S. patent US4917610 (1990)

  26. Weilenmann, M.F., Geering, H.P.: Test bench for rotorcraft hover control J. Guid. Control Dyn. 17(4), 729–736 (1994)

    Article  Google Scholar 

  27. Narli, V., Oh, P.Y.: A hardware-in-the-loop test rig for desining near-earth aerial robotics. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation (2006)

  28. I. The MathWorks: Online Available: http://www.mathworks.com/ (2013). Accessed 5 Mar 2013

  29. Slotine, J.J.E., Weiping, L.: Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, Inc. (1991)

    MATH  Google Scholar 

  30. Fahimi, F., Saffarian, M., The control point concept for nonlinear trajectory-tracking control of autonomous helicopters with fly-bar Int. J. Control 84(2), 242–253 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepehr P. Khaligh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaligh, S.P., Martínez, A., Fahimi, F. et al. A HIL Testbed for Initial Controller Gain Tuning of a Small Unmanned Helicopter. J Intell Robot Syst 73, 289–308 (2014). https://doi.org/10.1007/s10846-013-9973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9973-9

Keywords

Navigation