Skip to main content
Log in

Consensus of Multi-slave Bilateral Teleoperation System with Time-Varying Delays

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper studies the consensus problem for teleoperation system over communication networks. Compared with previous work, both multi-slave configuration and time variable delays are considered. According to the topology structure of slave robots, centralized and distributed consensus controllers are respectively designed, where a leader-following strategy is adopted. During the design process of distributed controllers, min-weighted rigid graph is used to optimize the topology structure of slave robots. With the optimized topology, the amount of communication links and energy dissipations in slave site can be reduced. Moreover, the sufficient stability conditions are presented to show the consensus controllers can stabilize the master-slave system under variable time delay. Finally, simulation results are performed to show the effectiveness of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfi, A., Farrokhi, M.: Force reflecting bilateral control of master-slave systems in teleoperation. J. Intell. Robot. Syst. 52(2), 209–232 (2008)

    Article  Google Scholar 

  2. Hashemzadeh, F., Hassanzadeh, I., Alizadeh, G.: Adaptive control for state synchronization of nonlinear haptic telerobotic systems with asymmetric varying time delays. J. Intell. Robot. Syst. 68(3–4), 245–259 (2012)

    Article  MATH  Google Scholar 

  3. Nitzsche, N., Schmidt, G.: Force-reflecting telepresence in extensive remote environment. J. Intell. Robot. Syst. 50(1), 3–18 (2007)

    Article  Google Scholar 

  4. Ye, Y., Liu, P.X.: Improving haptic feedback fidelity in wavevariable-based teleoperation oriented to telemedical applications. IEEE Trans. Instrum. Meas. 58(8), 2847–2855 (2009)

    Article  Google Scholar 

  5. Polushin, I.G., Liu, P.X., Lung, C.H.: A control scheme for stable force-reflecting teleoperation over IP networks. IEEE Trans. Syst. Man Cybern. B 36(4), 930–939 (2006)

    Article  Google Scholar 

  6. Hua, C.C., Liu, P.X.: Teleoperation over the internet with/without velocity signal. IEEE Trans. Instrum. Meas. 60(1), 4–13 (2011)

    Article  Google Scholar 

  7. Yang, X., Hua, C.C., Yan, J., Guan, X.P.: New stability criteria for networked teleoperation system. Inf. Sci. 233(1), 244–254 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nuño, E., Basañez, L., Ortega, R., Spong, M.W.: Position tracking for non-linear teleoperators with variable time delay. Int. J. Robot. Res. 28(7), 895–910 (2009)

    Article  Google Scholar 

  9. Polushin, I.G., Liu, P.X., Lung, C.H.: Stability of bilateral teleoperators with generalized projection-based force reflection algorithms. Automatica 48(6), 1005–1016 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu, Z.H., Ma, L., Wu, Z.Y., Schilling, K., Necsulescu, D.: Teleoperating a formation of car-like rovers under time delays. In: Processing of Chinese Control Conference, pp. 4095–4101 (2011)

  11. Rodríguez-Seda, E.J., Troy, J.J., Erignac, C.A., Murray, P., Stipanović, D.M., Spong, M.W.: Bilateral teleoperation of multiple mobile agents: coordinated motion and collision avoidance. IEEE Trans. Control Syst. Technol. 18(4), 984–992 (2010)

    Article  Google Scholar 

  12. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005)

    Article  Google Scholar 

  13. Hong, Y.G., Chen, G.R., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44(3), 846–850 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Su, H.S., Wang, X.F., Lin, Z.L.: Flocking for multi-agents with a virtual leader. IEEE Trans. Autom. Control. 54(2), 293–307 (2009)

    Article  MathSciNet  Google Scholar 

  15. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control. 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  16. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control. 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  17. Bai, H., Wen, J.T.: Cooperative load transport: a formation-control perspective. IEEE Trans. Robot. 26(4), 742–750 (2010)

    Article  Google Scholar 

  18. Anderson, B.D., Yu, C., Fidan, B., Hendrickx, J.: Rigid graph control architectures for autonomous formations. IEEE Control. Syst. Mag. 28(6), 48–63 (2008)

    Article  MathSciNet  Google Scholar 

  19. Eren, T., Anderson, B.D., Morse, A.S., Whiteley, W., Belhumeur, P.N.: Operations on rigid formations of autonomous agents. Commun. Inf. Syst. 3(4), 223–258 (2004)

    MathSciNet  Google Scholar 

  20. Yu, C., Hendrickxc, J.M., Fidana, B., Anderson, B.D., Blondel, V.D.: Three and higher dimensional autonomous formations: rigidity, persistence and structural persistence. Automatica 43(3), 387–402 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, X.Y., Li, S.B., Guan, X.P.: Automatic generation of minweighted persistent formations. Chin. Phys. B 18(8), 3104–3114 (2009)

    Article  Google Scholar 

  22. Kelly, R., Santibáñez, V., Loria, A.: Control of Robot Manipulators in Joint Space. Springer, New York (2005)

    Google Scholar 

  23. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)

    Book  MATH  Google Scholar 

  24. Beard, R.W., Stepanyan, V.: Information consensus in distributed multiple vehicle coordinated control. In: Processing of IEEE Control and Decision Conference, pp. 2029–2034 (2003)

  25. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1(4), 660–670 (2002)

    Article  Google Scholar 

  26. Merlin, C.J., Heinzelman, W.B.: Duty cycle control for low-power-listening MAC protocols. IEEE Trans. Mob. Comput. 9(11), 1508–1521 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Luo, X., Yang, X. et al. Consensus of Multi-slave Bilateral Teleoperation System with Time-Varying Delays. J Intell Robot Syst 76, 239–253 (2014). https://doi.org/10.1007/s10846-014-0023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0023-z

Keywords

Navigation