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Abstract The Darwinian Particle Swarm Optimiza-
tion (DPSO) is an evolutionary algorithm that extends
the Particle Swarm Optimization (PSO) using nat-
ural selection, or survival-of-the-fittest, to enhance
the ability to escape from local optima. An exten-
sion of the DPSO to multi-robot applications has been
recently proposed and denoted as Robotic Darwinian
PSO (RDPSO), benefiting from the dynamical parti-
tioning of the whole population of robots. Therefore,
the RDPSO decreases the amount of required informa-
tion exchange among robots, and is scalable to large
populations of robots. This paper presents a stabil-
ity analysis of the RDPSO to better understand the
relationship between the algorithm parameters and the
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robot’s convergence. Moreover, the analysis of the
RDPSO is further extended for real robot constraints
(e.g., robot dynamics, obstacles and communication
constraints) and experimental assessment with phys-
ical robots. The optimal parameters are evaluated in
groups of physical robots and a larger population of
simulated mobile robots for different target distri-
butions within larger scenarios. Experimental results
show that robots are able to converge regardless of
the RDPSO parameters within the defined attraction
domain. However, a more conservative parametriza-
tion presents a significant influence on the conver-
gence time. To further evaluate the herein proposed
approach, the RDPSO is further compared with four
state-of-the-art swarm robotic alternatives under sim-
ulation. It is observed that the RDPSO algorithm
provably converges to the optimal solution faster and
more accurately than the other approaches.

Keywords Swarm robotics · Natural selection ·
Convergence analysis · Robot constraints ·
Parameterization · Source localization
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1 Introduction

Bio-inspired algorithms have been employed in sit-
uations where conventional optimization techniques
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cannot find a satisfactory solution, for instance, when
the optimization function to be optimized is discon-
tinuous, non-differentiable, and/or presents too many
nonlinearly related parameters [1]. One of the most
well-known bio-inspired algorithms is the Particle
Swarm Optimization (PSO) which basically consists
of a machine-learning technique inspired by birds
flocking in search of food [2]. However, a general
problem with the PSO and other optimization algo-
rithms is that they can be trapped in sub-optimal
solutions, which may work well in some problems
but fail in others [1]. In search of a better model
of natural selection inspired by the PSO algorithm,
the Darwinian Particle Swarm Optimization (DPSO)
was formulated by Tillett et al. [3]. In this algorithm,
multiple swarms of test solutions, each one of them
performing just like an ordinary PSO, may exist at
any time with some rules governing the collection
of swarms which are designed to simulate natural
selection.

Using the findings inherent to bio-inspired algo-
rithms on multi-robot applications may contribute
to the solution of several real-world problems such
as search and rescue [4]. Nevertheless, it should be
noted that, contrary to the herein proposed multi-robot
swarm approach, denoted as Robotic Darwinian PSO
(RDPSO), most works only consider PSO and its main
variants applied to computational optimization prob-
lems, wherein particles are not endowed with physical
constraints inherent to mobile platforms [5]. Unlike
particles, i.e. virtual agents, robots are designed to act
in the real world where their dynamical characteris-
tics and environmental obstacles need to be taken into
account. Moreover, when the communication infras-
tructure is damaged or missing (e.g., hostile environ-
ments, search and rescue, disaster recovery, battle-
fields, space and others), the use of mobile ad-hoc
networks (MANETs) and multi-hop communication,
wherein robots also act as routers to support the col-
lective cooperation and coordination is necessary. In
other words, robots need to be able to create and main-
tain a MANET, wherein each one of them is both a
communication and a relay node, thus presenting itself
as a suitable solution to most real robotic applications.
Nevertheless, such strategy requires a distributed self-
spreading over a geographical area and a constrained
collective control of mobile nodes in order to ensure
the network connectedness.

Bearing this idea in mind, this paper contribution
can be divided into three research aspects:

i) Review of the RDPSO in which its main mech-
anisms that were initially introduced in [6] and
[7] are now highlighted and further explored ,
thus formally presenting the distributed RDPSO
algorithm for the first time.

ii) Formulation of a stability analysis of the RDPSO
so as to obtain an attraction domain relating
its several parameters, while taking into account
real robot constraints (e.g., dynamical charac-
teristics, exploration capabilities, obstacle avoid-
ance and MANET connectivity). This problem
was previously addressed in [8] and is now fur-
ther extended, thoroughly describing the stability
analysis and evaluating the influence of each
parameter within the defined attraction domain
using two physical robots.

iii) Evaluation of the RDPSO on groups of real
and simulated robots under a source localiza-
tion problem with different target distribution
based on commonly used benchmark functions.
A Multivariate Analysis of Variance (MANOVA)
is carried out to evaluate the performance of the
algorithm based on the number of robots, set of
parameters and target distribution. Furthermore,
the parameterized RDPSO is compared with four
state-of-the-art swarm robotic alternatives under
a simulated mapping task.

This paper is organized as follows. Section 3
revises the RDPSO and all its main features, pre-
senting the distributed algorithm for the first time.
Section 4 studies the stability of the RDPSO and
the influence of its parameters on robots’ conver-
gence considering real world constraints. Section 5
thoroughly evaluates the RDPSO on both real and
simulated experiments by statistically comparing its
performance under different parameter configuration
and with different robotic swarm strategies. Finally,
the take-home message and the main conclusions are
outlined in Sections 6 and 7, respectively.

2 Related Work

Regardless of PSO main variants [9, 10], the difficul-
ties in setting and adjusting the parameters, as well
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as in maintaining and improving the search capabili-
ties for higher dimensional or constrained problems,
are still a matter that has been addressed in recent
works (e.g., [11, 12]). One of the most common
methods to deal with such issue presented in the lit-
erature to deal with this issue is based on the stability
analysis of the algorithm. For instance, Clerc and
Kennedy [11] analyzed the individual particles’ trajec-
tories leading to a generalized model of the algorithm,
which contains a set of coefficients to control the sys-
tem’s convergence tendencies. The resulting system
was a second-order linear dynamical system whose
stability and parameters depended on the system poles
or the eigenvalues of the state matrix. Alternatively,
Kadirkamanathan et al. [12] proposed a stability anal-
ysis of a stochastic particle dynamics by representing
it as a nonlinear feedback controlled system. The Lya-
punov stability method was applied to the particle
dynamics to determine the sufficient and conserva-
tive conditions for asymptotic stability. However, the
analysis provided by the authors has addressed only
the issue of absolute stability, thus ignoring the opti-
mization convergence to the optimal solution. More
recently, a theoretical and empirical analysis of a PSO
variation was presented in [13]. Similarly to the herein
proposed work, the authors presented the conver-
gence analysis of the traditional PSO, thus providing
a significant insight on the stochastic dynamic of the
algorithm. The comparison with genetic algorithms
(GA) showed that a good parameter control ensures a
better performance of the PSO. However, the authors
concluded that the introduction of evolutionary opera-
tors, such as natural selection, inevitably improves the
algorithm convergence significantly.

Many other works have benefitted from PSO-based
algorithms applied to Multi-Robot Systems (MRS) for
search applications. However, still none of them has
presented a formal convergence analysis to find the
best parameters while considering MRS characteris-
tics. As an example, the work of Pugh and Martinoli
[14, 15] introduced an adapted version of the PSO
to distributed unsupervised robotic learning in groups
of robots. The authors analyzed how the performance
was affected if the standard PSO neighborhood struc-
ture was adapted to a more closely model, which can
be found in real robot groups with limited communi-
cation abilities. Experimental results showed that the
adapted version of the PSO maintained a better per-
formance for groups of robots of various sizes when

compared to other bio-inspired methods. However,
contrary to the RDPSO algorithm, all bio-inspired
methods used, including the adapted PSO, tend to get
trapped in local solutions. Also, the authors only eval-
uated the adapted PSO using a set of parameters with-
out any justification of their choice. More recently,
the work of Prasanna and Saikishan [16] involved
the path-planning and coordination of multiple robots
in a static-obstacle environment based on the PSO
and Bacteria Foraging Algorithm (BFA). As this work
uses natural selection to avoid getting trapped in sub-
optimal solutions, the one proposed by the authors
enhances the local search using the BFA. Experimen-
tal results were conducted in a simulation environment
developed in Visual Studio where the pose and shape
of obstacles were previously known. However, only
one target and two robots were used, thus limiting the
evaluation of the proposed algorithm. Moreover, the
authors did not mention the influence of the parame-
ters on the algorithm performance. Similarly, Hereford
and Siebold [17] proposed an embedded version of
the PSO to swarm platforms. As in the RDPSO, there
are no central agents to coordinate robots’ movements
or actions. Despite the potentialities of the physically-
embedded PSO, experimental results were carried out
using a population of only three robots, performing a
distributed search in a scenario without sub-optimal
solutions. Furthermore, collision avoidance and ful-
fillment of MANET connectivity were not considered.
The authors found the inertial coefficient using a trial-
and-error methodology but did not present any results
about the choice regarding the other PSO parameters.
The work of Jatmiko et al. [18] presented modified
form of the PSO to control robots behavior for odor
source localization, thus studying how they respond to
turbulence and wind changes. Once again, the authors
did not go to any lengths to explain their choice of the
PSO parameters.

Next section presents the RDPSO main features
which will be further explored in the subsequent sec-
tions, thus obtaining the relation between the algoritm
parameters.

3 Robotic Darwinian PSO

This section presents an overview of the RDPSO algo-
rithm proposed in [6] and further extended in [7].
Since the RDPSO approach is a complete adaptation
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of the DPSO [3] for real mobile robots, five general
features were proposed: i) an improved inertial influ-
ence based on fractional calculus concept, taking into
account convergence dynamics; ii) an obstacle avoid-
ance behavior to avoid collisions; iii) an algorithm to
ensure that the MANET remains connected through-
out the mission; iv) a novel methodology to establish
the initial planar deployment of robots preserving the
connectivity of the MANET while spreading out the
robots as much as possible; and v) a novel “punish”-
“reward” mechanism to emulate the rejetion and addi-
tion of robots based on social exclusion and inclusion
phenomena.

The behavior of robot n can then be described by
the following discrete equations at each discrete time,
or iteration, t ∈ N0:

vn[t + 1] = wn[t] +
4∑

i=1

ρiri (χi[t] − xn[t]) , (1)

xn[t + 1] = xn[t] + vn[t + 1], (2)

where coefficients ρi, i = 1, 2, 3, 4, assign weights to
the inertial influence, the local best (cognitive compo-
nent), the local best (social component), the obstacle
avoidance component and the enforcing communica-
tion component when determining the new velocity,
with ρi > 0. Note that the size of all vectors (� )
depends on the dimensionality R� of the physi-
cal space being explored, e.g., � = 2 for planar
problems. vn[t] and xn[t] represent the velocity and
position vector of robot n, respectively. In the com-
mon PSO algorithm, the inertial component wn[t]
is usually proportional to the inertial influence. The
RDPSO uses fractional calculus (FC) [19, 20], to
describe the dynamic phenomenon of a robot’s tra-
jectory. Although next section briefly presents this
feature, a more detailed description can be found in
[21]. χi[t] represents the best position for the cogni-
tive, social, obstacle and MANET matrix components.
The cognitive χ1[t] and social χ2[t] components are
the commonly presented in the classical PSO algo-
rithm. χ1[t] represents the local best position of robot
n while χ2[t] represents the global best position of
robot n. Since the other features χ3[t] and χ4[t] are
novel, they are briefly explored in the subsequent sec-
tions. In brief, χ3[t] represents the local best position
of robot n regarding the sensed obstacles so far. Sim-
ilarly, χ4[t] represents the local best position of robot
n that allows maintaining a connected MANET based

on its closest neighbor. Note that the size of all vec-
tors (� ) depends on the dimensionality R� of the
physical space being explored, e.g., � = 2 for planar
problems.

Considering Eqs. (1) and (2), it is noteworthy that
robots will tend to converge to the optimal solu-
tion. However, although all robots within a swarm
agree with the best solution, they must also fulfill
other requirements (i.e., avoid obstacles and maintain
a certain distance between neighbors).

3.1 Fractional Order Convergence

Fractional calculus (FC) has attracted the attention
of many researchers due to its application in various
scientific fields such as engineering, computational
mathematics, fluid mechanics, among others [19, 20].
FC can be considered as a generalization of integer-
order calculus, thus accomplishing what integer-order
calculus cannot. As a natural extension of the inte-
ger (i.e., classical) derivatives, fractional derivatives
provide an excellent tool for the description of mem-
ory and hereditary properties of processes. One of the
most common approaches presented in the literature
(cf., [22]) is the approximate discrete time Grnwald-
Letnikov fractional difference of order α, 0 < α ≤ 1,
given by the following equation:

Dα[vn[t + 1]] =
1

T α

r∑

k=0

(−1)k�(α + 1)vn[t + 1 − kT ]
�(k + 1)�(α − k + 1)

(3)

where T is the sampling period, � the gamma function
and r is the truncation order of the fractional differ-
ence of the discrete velocity vn[t + 1]. Based on Eqs.
(1) and (3), and considering T = 1, r = 4, the inertial
component of robot n can be defined as:

wn[t] = αvn[t] + 1

2
αvn[t − 1]

+1

6
α(1 − α)vn[t − 2]

+ 1

24
α(1 − α)(2 − α)vn[t − 3]. (4)

The truncation r of Eq. (3) depends on the require-
ments of the application and the features of the robot.
For instance, for the eSwarBot (Educative Swarm
Robot) platforms previously presented in [23], a r = 4
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leads to results of the same type as for r > 4. Although
one could consider the processing power to be the
main reason to use a limited number of terms, the
kinematical features of the platform and the mission
requirements also need to be considered. Please refer
to [21] for a more detailed description of the frac-
tional calculus extension of the RDPSO algorithm and
the memory complexity inherent to it. The features
revealed by fractional calculus make this mathemat-
ical tool well suited to describe phenomena such as
irreversibility and chaos because of its inherent mem-
ory property. In this line of thought, the dynamic
phenomenon of a robot’s trajectory configures a case
wherein fractional calculus tools fit adequately.

3.2 Obstacle Avoidance

When a robot must move from any arbitrary start
position to any target position in the environment, it
must be able to avoid both static and dynamic obsta-
cles [24]. Therefore, a new cost or fitness function is
defined in such a way that it would guide the robot
to perform the main mission while avoiding obsta-
cles. For this purpose, it is assumed that each robot is
equipped with sensors capable of scanning the envi-
ronment for obstacle detection within a finite sensing
radius rs . A monotonic and positive sensing func-
tion g(xn[t]) depending on the sensing information
(i.e., distance from the robot to obstacle) is defined.
In most situations g(xn[t]) can be represented as the
relation between the analog output voltage of range
sensors and the distance to the detected object. χ3[t]
is then represented by the position of each robot that
optimizes the monotonically decreasing or increas-
ing g(xn[t]). In an obstacle-free environment, the
obstacle susceptibility weight ρ3 is zero. However, in
real-world scenarios, obstacles need to be taken into
account and the value of ρ3 depends on several condi-
tions related to the main objective (i.e., minimizing a
cost function or maximizing a fitness function) and the
sensing information (i.e., monotonicity of g(xn[t])).
Furthermore, the relation between ρ3 and the other
weights depends on the susceptibility of each robot to
obstacle avoidance behavior and the sensing radius rs
in which a robot is expected detect obstacles.

Recently, different strategies have been presented
in the literature to handle collision avoidance by using
low level control routines triggered whenever robots

sense obstacles (e.g., [25]). Although such methodol-
ogy allows for decoupling of the high level behavior of
robots from collision avoidance routines, such strategy
would be unfeasible within the herein proposed model
since the stability analysis needs to consider obstacles
influence on robots, so as to find a relation between
the several components of the algorithm, such as the
MANET component presented next.

3.3 Ensuring MANET Connectivity

Robots’ position needs to be controlled in order to
maintain the communication based on constraints such
as maximum distance or minimum signal quality. The
way the network will be forced to preserve connec-
tivity depends on communication characteristics (e.g.,
multi-hop, biconnectivity) [26]. Assuming that the
network supports multi-hop connectivity, the commu-
nication between two end nodes (i.e., robots) is carried
out through a number of intermediate nodes whose
function is to relay information from one point to
another. Note that any robot may be used as a relay
node independently of its swarm. Considering that
nodes are mobile, it is necessary to guarantee the exis-
tence of a multi-hop communication path between any
pair of nodes [7].

In the case of each robot corresponding to a node,
in order to overcome the non-connectivity between
them, the desired position, i.e., xn[t + 1], must be
controlled since it influences the adjacency matrix A.
The adjacency matrix, on the other hand, depends on
the maximum communication range dmax or the min-
imum signal quality represented by the link matrix
L = {lij } for an N -node network, where each entry
represents the link between robots i and j (cf. Fig. 1).

One way to ensure the full connectivity of the
MANET is to implement the following basic princi-
ple: to ensure that each robot is able to communicate
with its nearest neighbor which has not already cho-
sen it as its nearest neighbor. Since the connectivity
depends on the distance/signal quality, connectivity
between nodes may be ensured by computing the min-
imum/maximum value of each line of link matrix
L, after excluding zeros and (i, j) pairs previously
chosen. Therefore, the MANET component χ4[t] is
represented by the position of the nearest neigh-
bor increased by the maximum communication range
dmax toward the robot’s current position. A higher ρ4
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 - does not matter

Fig. 1 Illustration of a MANET topology of a swarm. The dashed lines represent the maximum distance dmax between each pair of
robots and the arrows represent the force vectors that ensure MANET connectivity

may enhance the ability to maintain the network con-
nectedness ensuring a specific range or signal quality
between robots.

To further understand how the RDPSO maintains
the MANET connectivity, consider the topology in
Fig. 1. As it may be perceived, robot 2 is the near-
est neighbor of robot 1 and it is also at the correct
distance dmax (corresponding to 5 m in this exam-
ple) resulting in a null force connectivity vector. The
nearest neighbor of robot 2 is robot 3 which is too
close, thus resulting in a repulsive force at robot 2 in
order to ensure dmax . Finally, the nearest neighbor of
robot 3, which has not been chosen already, is robot 4
which is too far away, thus invoking an attraction force
affecting robot 3 to move toward robot 4.

Nevertheless, one of the major concerns in this ap-
proach is that all robots should have an initial deploy-
ment that preserves the communication between the
robots in the population. Moreover, it is also known
that in classical PSO algorithms particles need to be
scattered throughout the scenario. The following sec-
tion presents the RDPSO initial planar deployment
of the robots that preserves the connectivity of the
MANET while spreading out the robots as much as
possible.

3.4 Initial Deployment

One of the common approaches to the initial deploy-
ment of mobile robots is to use a random distribution
along the scenario [27]. This methodology is the sim-
plest way of deploying robots since, robots since, in
most cases, the distribution of the points of interest
is random. However, in real situations, it is necessary

to ensure several constraints of the system, such as
MANET connectivity, hence increasing the complex-
ity of the random distribution. In addition, random
deployment may result in unbalanced deployment and
therefore increase the hardware cost.

This approach tries to get the benefits of a random
planar deployment of robots while eliminating the
disadvantages inherent to it. Furthermore, the herein
proposed approach takes into account the communica-
tion constraints using a deployment strategy based on
the Spiral of Theodorus (aka, square root spiral). This
spiral is composed of contiguous right triangles (for-
merly called rectangled triangles) with each cathetus
(aka, leg) having a unit length of 1 [28]. Each of
the triangle’s hypotenuses gives the square root to a
consecutive natural number.

Since this approach uses the Spiral of Theodorus to
carry out the initial deployment of robots, two general
adjustments need to be considered: i) the initial posi-
tion of each robot is set at the further vertex of the
centre of the spiral for each right triangle with a ran-
dom orientation; and ii) the size of the cathetus is set
as the maximum communication range dmax (instead
of having the unit length 1) consequently changing
the triangles’ hypotenuses to the product between the
maximum communication range and the square root
of the consecutive natural number.

In real situations, the maximum communication
distance dmax should be established considering the
worst case situation (i.e., urban environment). These
assumptions make it possible to have an initial deploy-
ment of the robots depending on both the number of
robots and the communication constraints.
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The total angle ϕn of the nth robot situated in the
kth triangle (or spiral segment), can be calculated as
the cumulative sum:

ϕn = σs

n∑

k=1

arctan

(
1√
k

)
, (5)

in which σs is randomly set to ±1 for each swarm,
thus allowing for a computation of the initial planar
position of each robot n as if follows:

xn[0] = x0 +
[
dmax

√
n+ 1 cos (ϕn + ϕ0)

dmax

√
n+ 1 sin (ϕn + ϕ0)

]
, (6)

where x0 and ϕ0 are the center and orientation of the
spiral which can be randomly assigned at each trial
ensuring the efficiency of the stochastic algorithms.

In short, the initial deployment of each swarm of
the RDPSO will correspond to a spiral in which the
position of each robot depends on the prior deployed
robot and the center of the spiral x0 (Fig. 2). To allow
for an autonomous deployment of robots in a scenario,

a preprocessing of the environment needs to be under-
taken in order to prevent robots from being deployed
into areas of no interest (e.g., water, obstacles, other
robots). This can be accomplished with unmanned
aerial vehicles (UAVs) through image segmentation
(cf., [29]).

In the future, since it is out of the scope of this
work, further improvements to the deployment strat-
egy will be addressed in order to spare the need of a
preprocessing procedure.

3.5 Punish-Reward Mechanism

In the common DPSO [3], natural selection is repre-
sented by a “punish”-“reward” mechanism. The “pun-
ish” represents the rejetion of particles and swarms,
while the “reward” represents the addition of new
particles and swarms. In order to adapt DPSO to
mobile robotics, the rejetion and addition of a robot
are modeled by the mechanisms of social exclusion
and social inclusion, respectively [30]. These concepts
of social exclusion and inclusion may also be found in

dmax 

dmax 

dmax 

dmax 1 

dmax 2 
dmax 3 

dmax 4 

2 
1

3 

x0 

x1[0]

x2[0]

x3[0]

Fig. 2 Initial deployment of the RDPSO algorithm of a population of robots divided in 3 swarms of 3 robots each based on the Spiral
of Theodorus [7]
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nonhuman animals through stigmatization processes
such as:

– Territoriality (e.g., fish, birds, reptiles and mam-
mals) - exclusion of other members of the same
species (e.g., certain sex) from an area;

– Status hierarchies (e.g., some bird species, lions,
baboons, chimps) - individual at the top of the hier-
archy excludes others from resources (e.g., food,
territory, mates);

– Social ostracism (e.g., some fish species, lemurs,
baboons, chimps) - prevent others from joining
social group or forcing expulsion.

For instance, three-spined sticklebacks (a type of
fish) avoid others of the same specie with parasites,
while Grizzlies (bear) present a hierarchy-related
behavior that provides a mechanism that mutes the
potential social costs of membership in stable aggre-
gations [31].

The RDPSO is then represented by multiple
swarms, i.e., multiple groups of robots that altogether
form a population. Each swarm individually performs
just like a PSO adapted to multi-robot applications
(explained in the previous subsections) in search for
the solution and the whole population of robots is
controlled by a set of rules. If there was no improve-
ment in a swarm’s objective over a period of time, the
swarm is punished by excluding the worst performing
robot, which is added to a socially excluded group.
The worst performing robot is evaluated by the value
of its objective function compared to other members

in the same swarm. In other words, if the objective
is to maximize the fitness function, the robot to be
excluded will be the one with the lower fitness value.
The RDPSO “punish”-“reward” rules are summa-
rized in Table 1. Alternative strategies to dynamically
divide the population into stochastic clusters were
previously proposed and results always outperformed
the static solutions, thus avoiding sub-optimality and
stagnation [32].

The socially excluded robots, instead of search-
ing for the objective function’s optimal solution like
the other robots in the active swarms, they randomly
wander in the scenario. This approach improves the
algorithm, making it less susceptible of becoming
trapped in a sub-optimal solution. Note, however, that
they are always aware of their individual solution and
the global solution of the socially excluded group.

Having multiple swarms ensures a distributed
approach because the network that was previously
defined by the whole population of robots is now
divided into multiple smaller networks (one for each
swarm), thus decreasing the number of nodes (i.e.,
robots) and the information exchanged between robots
of the same network. In other words, robots interaction
with other robots through communication is confined
to local interactions inside the same group (swarm),
thus making RDPSO scalable to large populations of
robots.

To easily understand RDPSO dynamics, let us
consider the following geometrical illustration from
Fig. 3. Considering a swarm of two robots as Fig. 3

Table 1 Punish-reward RDPSO rules previously introduced in [6]

PUNISH REWARD

If a socially active subgroup does not improve If a socially active subgroup improves and

during a specific threshold SCmax (stagnancy its current number of robots is inferior to Nmax

counter SCs = SCmax ) and the number of robots (Ns < Nmax) and there is, at least, one socially

is superior to Nmin (Ns > Nmin), then excluded robot, then it is rewarded with

the subgroup is punished by socially the best performing socially excluded robot

excluding the worst performing robot

If a socially active subgroup does not improve If a socially active subgroup is not stagnated

during a specific threshold SCmax (stagnancy (stagnancy counter SCs = 0) and there are,

counter SCs = SCmax ) and the number of robots is at least, NI socially excluded robots, then

Nmin (Ns = Nmin), then the subgroup is punished it has a small probability psp of spawning

by being dismantled, i.e., all robots from a new socially active subgroup

that subgroup are socially excluded
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Fig. 3 Geometrical
Illustration of the RDPSO
using a swarm of two
robots. The main variables
from Eqs. (1–2) are
illustrated as vectors. ρ1
influences robots to
improve their own
individual solutions. ρ2
influences robots toward the
same best global position of
the swarm. ρ3 influences
robots to move to a previous
position in which obstacles
were not detected within
robot’s range. ρ4 influences
robots to maintain a certain
maximum distance or
minimum signal quality
between themselves. α
influences the next position
of both robots as an inertial
factor that considers their
trajectory

depicts, the cognitive coefficient ρ1 influences robots
to improve their own individual solutions. In the case
of robot 2, both cognitive ρ1 and social coefficients ρ2

influence it toward the same position since it is the best
performing robot of the swarm. On the other hand, the
social coefficient ρ2 of robot 1 attracts it to the global
best position found so far by robot 2. The obstacle sus-
ceptibility weight ρ3 influences robots to move to a
previous position in which obstacles were not detected
within robot’s range. As for the enforcing communi-
cation component ρ4, since robot 2 was the first to
choose robot 1 as is nearest neighbor, being at a dis-
tance inferior to dmax , it is slightly repelled by it. It is
noteworthy that the fractional coefficient α influences
the next position of both robots, x1[t+1] and x2[t+1],
as an inertial factor that considers their trajectory.

Algorithm 1 summarizes the distributed RDPSO
algorithm that encompasses all of the previous fea-
tures for robot n when trying to maximize a given
objective function. The sensing function g(xn[t]) is
monotonically decreasing, i.e., as the robot gets near
the obstacle, g(xn[t]) decreases. Also, let us consider
that the adjacency matrix depends on the maximum
range dmax represented by the link matrix L = {lij }.

Although the RDPSO algorithm was first proposed
by the authors in [6], a more formal and detailed
definition is done in the algorithm presented in Fig. 4.

Beside the several characteristics inherent to the
RDPSO, its performance highly depends on the
values of α and ρi, i = 1, 2, 3, 4, since it is a param-
eterized swarm algorithm. Therefore, an attraction
domain in which parameters may be defined to ensure
the convergence of the RDPSO needs to be found.
In addition, a suitable relation between the several
parameters needs to be defined to contemplate real
world constraints.

4 Convergence Analysis

The above presented RDPSO is a stochastic procedure
in which Eq. (1) describes the discrete-time motion of
a robot with four external inputs χi [t], i = 1, 2, 3, 4.
The main problem when analyzing this kind of algo-
rithms lies in the fact that external inputs vary in time.
However, one can consider that each robot converges
to an equilibrium point defined by the limit values of
the attractor points χi . Therefore, assuming that the
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Fig. 4 RDPSO algorithm
for robot n Wait for information about initial pose  and 

Loop: 
If // it is not an excluded robot

Evaluate its individual solution 
If // robot has improved

// Section 2

Exchange information with teammates about the individual solution  and current position 
Build a vector  containing the individual solution of all robots within 
If // swarm has improved

// Section 2

If 
// stagnancy counter

If // the swarm can be rewarded

If  and // small probability of calling a new robot

Broadcast the need of a new robot to any available excluded robot  // Table 1
If 

// excluded robots counter

If // small probability of creating a new swarm

Broadcast the possibility of creating a new swarm to any available excluded robot // Table 1
If 

// excluded robots counter
Else // swarm has not improved

// stagnancy counter
If // punish swarm

If // it is possible to exclude the worst performing robot
// excluded robots counter

// reset search counter

If // this is the worst performing robot
// exclude this robot

Else // delete the entire swarm
// exclude this robot

If // maximize distance to obstacles
// Section 2.2

// sort the elements of line  from link matrix  in ascending order
For

If  has not yet chosen it as its nearest neighbor 

// the position of the nearest neighbor increased by  toward 

Communicate to robot  that it was chosen by robot // Section 2.3
break from For 

// equation 1
// equation 2

Else // it is an excluded robot
Wandering algorithm  // e.g., [28] 
Evaluate its individual solution 
If // robot has improved

Exchange information with teammates about the individual solution  and current position 
Build a vector  containing the individual solution of all  robots within the excluded swarm ( )
If

If // this is one of the best  performing robot of the excluded swarm

If  and // small probability of creating a new swarm

// include this robot in the new active swarm
Broadcast the need of  robots to any available excluded robot  // Table 1

Else 
If receives information about the need of a new robot

// include this robot in the active swarm

Exchange information with teammates about 
If receives information about the need of creating a new swarm

// include this robot in a new active swarm
// reset number of robots in the swarm

// reset number of excluded robots
// reset search counter

until stopping criteria (convergence/time) 
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algorithm converges, this section presents the stability
analysis of the RDPSO. Although this topic was pre-
viously addressed in [8], this paper presents a more
detailed description on how to obtain the global attrac-
tion domain and how this may be reduced to a par-
ticular attraction domain based on robot constraints.
Moreover, the influence of each RDPSO parameter
is assessed by means of several experiments with a
swarm of two physical robots.

4.1 Problem Statement

Consider a population of NT robots wherein each
robot needs to cooperatively find the optimal solution
of a given mission within its swarm. The goal is to
find the attraction domain A such that, if coefficients
α, ρi ∈ A , i = 1, 2, 3, 4, the global asymptotic stabil-
ity of the system defined by (1) and (2) is guaranteed.
In other words, the attraction domain A represents the
region wherein RDPSO parameters may be defined
in such a way that robots can find the optimal solu-
tion while avoiding obstacles and ensuring MANET
connectivity.

4.2 General Approach

Knowing that vn[t − k] = xn[t − k] − xn[t − (k+ 1)]
with k ∈ N0, and considering Eqs. (1) and (2), one can
rewrite the RDPSO equation as a nonhomogeneous
five-order difference equation:

xn[t + 1] +
(
−1 − α +

∑4

i=1
ρiri

)
xn[t]

+
(

1

2
α

)
xn[t − 1] +

(
1

3
α + 1

6
α2

)
xn[t − 2] +

+
(
− 1

24
α3 − 1

24
α2 + 1

12
α

)
xn[t − 3]

+
(

1

24
α3 − 1

8
α2 + 1

12
α

)
xn[t − 4]

=
∑4

i=1
ρiriχi[t]. (7)

The equilibrium point x∗n can be defined as a con-
stant position solution of (7), such that, when each
robot reaches x∗n , the velocity vn[t + k] is zero, i.e.,
robots will stop at the equilibrium point x∗n . Suppos-
ing that χi are constants, i.e., the algorithm does con-

verge, the particular solution x∗n of each robot can be
obtained replacing xn[t + 1 − k] in Eq. (7) by x∗n :

x∗n +
(
−1 − α +

∑4

i=1
ρiri

)
x∗n +

(
1

2
α

)
x∗n

+
(

1

3
α + 1

6
α2

)
x∗n +

(
− 1

24
α3 − 1

24
α2 + 1

12
α

)
x∗n +

+
(

1

24
α3 − 1

8
α2 + 1

12
α

)
x∗n =

∑4

i=1
ρiriχi[t] ⇔ x∗n

=
∑4

i=1 ρiriχi∑4
i=1 ρiri

.

(8)

In other words, each robot will converge to the par-
ticular solution x∗n , based on the following theorems
[33]:

Theorem 1 [33] All solutions of (7) converge to x∗n
as t → ∞, if and only if the homogeneous difference
equation of (7) is asymptotically stable.

Theorem 2 [33] The homogeneous difference equa-
tion of (7) is asymptotically stable if and only if all
roots of the corresponding characteristics equation
have modulus less than one.

In order to study the homogeneous difference Eq.
(7) stability, let us consider the following characteris-
tic equation:

p(λ) ≡ λ5 +
(
− 1− α+

∑4

i=1
ρiri

)
λ4+

(
1

2
α

)
λ3

+
(

1

3
α + 1

6
α2

)
λ2 ++

(
− 1

24
α3 − 1

24
α2 + 1

12
α

)
λ

+
(

1

24
α3 − 1

8
α2 + 1

12
α

)
= 0.

(9)

Due to the complexity in obtaining the roots of the
characteristics equation of homogeneous difference
Eq. (7), a result based on Jury-Marden’s Theorem [34]
is established which ensures that all roots of the real
polynomial p(λ) have modulus less than one.

Theorem 3 [34] Consider the real polynomial
p(y) = a0y

n + a1y
n−1 + · · · + an−1y + an, a0 > 0.

Construct an array having initial rows:

{c11, c12, . . . , c1,n+1} = {a0, a1, . . . , an},
{d11, d12, . . . , d1,n+1} = {an, an−1, . . . , a0},
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and subsequent rows defined by:

cβγ =
∣∣∣∣
cβ−1,1 cβ−1,γ+1

dβ−1,1 dβ−1,γ+1

∣∣∣∣ , β = 1, 2, . . . , n+ 1

dβγ = cβ,n−γ−β+3

All roots of the polynomial p(y) have modulus less
than one if and only if d21 > 0, dτ1 < 0 (τ =
3, 4, . . . , n+ 1).

Therefore, let us present the following result.

Proposition 1 All roots of p(λ) have modulus less
than one if and only if the following conditions are
met.
{

0 <
∑4

i=1 ρiri ≤ α + 2 , 0 < α ≤ 0.6
15
4 α − 9

4 <
∑4

i=1 ρiri ≤ α + 2 , 0.6 < α ≤ 1
.

(10)

Proof The real polynomial p(λ) described in Eq. (9)
can be rewritten as:

a0λ
5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ+ a5 = 0, (11)

Furthermore, one can construct an array having
initial rows defined as:

c11, c12, . . . , c16 = a0, a1, . . . , a5,

d11, d12, . . . , d16 = a5, a4, . . . , a0,
(12)

and subsequent rows defined by:

cβγ =
∣∣∣∣
cβ−1,1 cβ−1,γ+1

dβ−1,1 dβ−1,γ+1

∣∣∣∣ , (13)

dβγ = cβ,8−γ−β, (14)

where β = 2, 3, 4, 5, 6 and γ = 0, 1, 2, 3.
By Theorem 3, we consider that all roots of poly-

nomial p(λ) have modulus less than one if and only if
d21 > 0, dτ1 < 0, for τ = 3, 4, 5, 6. Hence,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d21 > 0
d31 < 0
d41 < 0
d51 < 0
d61 < 0

⇔

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − a2
5 > 0

(1 − a5a1)
2 − d2

21 < 0
((1−a5a1)(a1−a5a4)−d21(a3−a5a2))

2−d2
31<0

c2
41 − d2

41 < 0
c2

51 − d2
51 < 0

(15)
Solving (15) we obtain:

{
0 <

∑4
i=1 ρiri ≤ α + 2 , 0 < α ≤ 0.6

15
4 α − 9

4 <
∑4

i=1 ρiri ≤ α + 2 , 0.6 < α ≤ 1
.

(16)

Consequently, by Proposition 1, Theorem 1 and
Theorem 2, the conditions in (10) are obtained so that
all solutions of (7) converge to x∗n resulting in a global
attraction domain A = {α, ρi : 0 <

∑4
i=1 ρiri ≤

α + 2, 0 < α ≤ 0.6 ∧ 15
4 α − 9

4 <
∑4

i=1 ρiri ≤
α + 2, 0.6 < α ≤ 1; i = 1, 2, 3, 4} (cf., Fig. 5).
Although it was possible to define a relatively small
attraction domain, next section further explores par-
ticular conditions of the algorithm, by redefining and
adjusting parameters values.

4.3 Robot Constraints

One way to improve the convergence analysis of
the algorithm consists of adjusting the parameters
based on physical mobile robots constraints, such as
acceleration and deceleration states inherent to their
dynamical characteristics. These states are usually
unaddressed in the literature while analyzing the tradi-
tional PSO and its main variants, since virtual agents
(i.e., particles) are not constrained by such behaviors.
Let us then suppose that a robot is traveling at a con-
stant velocity such that vn[t−k] = v with k ∈ N0 and
it is able to find its equilibrium point in such a way
that xn[t] = χi, i = 1, 2, 3, 4. In other words, the best
position of the cognitive, social, obstacle and MANET
components is the same. As a result, the robot needs
to decelerate until it stops, i.e., v > vn[t + 1] ≥ · · · ≥
vn[t + k] ≥ · · · ≥ 0.

Consequently, Eqs. (1) and (4) can be rewritten as:

0 ≤ v

(
α+1

2
α+1

6
α(1−α)+ 1

24
α(1−α)(2−α)

)
< v,

(17)

thus resulting in

0 < α ≤ 0.632. (18)

Let us now consider the opposite scenario, i.e., a
robot that has stopped vn[t − k] = 0 with k ∈ N0

starts to move since xn[t] �= χi , i = 1, 2, 3, 4. The
robot needs to accelerate until it reaches the maximum
velocity defined by Eq. (1), taking into account that
wn[t] = 0.
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Similarly to the procedure presented in (7), but con-
sidering the previously described conditions, the fol-
lowing nonhomogeneous first-order difference equa-
tion results:

xn[t+1]+
(

4∑

i=1

ρiri − 1

)
xn[t] =

4∑

i=1

ρiriχi [t]. (19)

Hence, the characteristic equation associated to
(19) is

p1(λ) ≡ λ+
(

4∑

i=1

ρiri − 1

)
= 0. (20)

Proposition 2 The homogeneous difference equation
of (19) is asymptotically stable if and only if

0 <

4∑

i=1

ρiri < 2. (21)

Proof Based on Theorem 2 one can consider that the
homogeneous difference Eq. (19) is asymptotically
stable if and only if the root of p1(λ) have modulus
less than one. Therefore,

p1(λ) = 0 ⇔ λ+
(

4∑

i=1

ρiri − 1

)

= 0 ⇔ λ = −
(

4∑

i=1

ρiri − 1

)
(22)

Then,

|λ| < 1 ⇔
∣∣∣∣∣−

(
4∑

i=1

ρiri − 1

)∣∣∣∣∣

< 1 ⇔ 0 <

4∑

i=1

ρiri < 2. (23)

Consequently, by Proposition 2 and Theorem 1, the
conditions in (21) are obtained so that all solutions of
(19) converge to x∗n resulting in a particular attraction
domain Ap.

1

2

3

1

boundary

boundary

Fig. 5 Global attraction domain A = {α, ρi : 0 <∑4
i=1 ρiri ≤ α + 2, 0 < α ≤ 0.6 ∧ 15

4 α − 9
4 <

∑4
i=1 ρiri ≤

α + 2, 0.6 < α ≤ 1; i = 1, 2, 3, 4} and particular attrac-
tion domain Ap = {α, ρi : 0 <

∑4
i=1 ρi ≤ 2, 0 < α ≤

0.6∧ 15
4 α− 9

4 <
∑4

i=1 ρi ≤ 2, 0.6 < α ≤ 0.632; i = 1, 2, 3, 4}
of the asymptotic stability of the RDPSO

However, since ri randomly varies between 0 and
1, such that max ri = 1, i = 1, 2, 3, 4, condition (21)
can be rewritten as:

0 <

4∑

i=1

ρi < 2. (24)

Hence, the particular attraction domain Ap = {α, ρi :
0 <

∑4
i=1 ρi ≤ 2, 0 < α ≤ 0.6 ∧ 15

4 α − 9
4 <∑4

i=1 ρi ≤ 2, 0.6 < α ≤ 0.632; i = 1, 2, 3, 4}
is represented by the parameter region, i.e., attrac-
tion domain, of the asymptotic stability depicted in
Fig. 5.

As a result of the above analysis, the RDPSO can
be conceived in such a way that the system’s con-
vergence can be controlled by taking into account
obstacle avoidance and MANET connectivity, without
resorting to the definition of any arbitrary or problem-
specific parameters. However, the influence of each
individual parameter ρi and fractional coefficient α
in the performance of the algorithm needs to be fur-
ther explored in order to systematically adjust the
collective behavior of the swarm.
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4.4 Preliminary Evaluation

To evaluate the parameters’ impact within the RDPSO
algorithm, a swarm of two physical robots was used in
the following set of experiments (Fig. 6). The robots
consisted on eSwarBots differential ground platforms
recently developed and presented in [23] for swarm
robotics applications. Although the platforms present
a limited odometric resolution of 3.6 ◦ while rotating
and 2.76 mm when moving forward, their low cost and
high autonomy enable the performance of experiments
with large number of robots.

As described in [35] and [36], a swarm behav-
ior can be divided into two activities: i) exploita-
tion; and ii) exploration. If the exploitation level is
too high, then the algorithm may get stuck on sub-
optimal solutions. However, if the exploration level
is too high, the algorithm may take too much time
to find the optimal solution. In order to understand
the relation between the fractional coefficient α and
exploitation/exploration capabilities of the RDPSO,
the center-of-mass trajectory in phase space of the
swarm of 2 eSwarBots, for various values of α, while
fixing ρi = 0.49, was analyzed. Both robots were
randomly deployed in the vicinity of the solution in
(0, 0) with a fixed distance of 0.5 m between them.
The solution was defined by an illuminated spot which
was sensed using the overhead light sensors (LDR)
equipped on the platforms (cf, Fig. 6).

As it may be perceived in Fig. 7a, the behavior of
the swarm is susceptible to changes in α. When α is
too small, i.e., α = 0.01, the exploitation level is too
high and likely to get stuck in a sub-optimal solution.

Fig. 6 Illustrative example of the preliminary results to study
the RDPSO algorithm on two eSwarBot platforms

However, the intensification of the algorithm conver-
gence is improved - it presents a quick almost linear
convergence. When α is at the boundary of the par-
ticular attraction domain Ap, i.e., α = 0.632, the
trajectory of the swarm is cyclical and presents a good
balance between exploitation and exploration. In this
case, robots exhibit a level of diversification adequate
to avoid local solutions and yet at a considerable level
of intensification to converge to the optimal solution
- the trajectory of the swarm is represented by a spi-
ral convergence toward a nontrivial attractor. When α

is too high and outside Ap, i.e., α = 0.99, despite
the cyclical trajectory of the swarm toward the global
solution, the swarm presents an oscillatory behav-
ior, thus having a high exploration level but being
more unstable and sometimes unable to converge -
it presents a difficult convergence. The values of the
cognitive and social factors ρ1 and ρ2 are not criti-
cal for the algorithm convergence, but the selection
of proper values may result in superior performance,
both in terms of speed of convergence and sub-optimal
solutions avoidance. To further understand the cog-
nitive and social components of the RDPSO, the 2
eSwarBots were placed near the local and global solu-
tion uniquely identifiable by controlling the brightness
of the light - the brighter site (optimal solution) was
considered better than the dimmer one (sub-optimal
solution), and so the goal of the swarm was to col-
lectively choose the brighter site (cf., Fig. 8 from
next section visualizes the experimental setup). At the
beginning, robots were at a distance of 1.60 m from
each other. Also, the fractional coefficient α was fixed
at 0.632 (i.e., the threshold stability) and ρ3 = ρ4 =
0.1 for multiple (ρ1, ρ2) combinations while keep-
ing the same absolute value ρT = 1 with ρT =
ρ1 + ρ2. Figure 7b presents the Euclidean distance
in phase space between the 2 robots, thus depicting
the evolution and convergence of the distance between
them. As expected, increasing the social weight ρ2

decreases the Euclidean distance between robots - the
distance between robots inclines to only a few cen-
timeters when using (ρ1, ρ2) = (0.1, 0.9) and near 1
meter using (ρ1, ρ2) = (0.9, 0.1). However, the rela-
tion between the inter-robot final distance and (ρ1, ρ2)

weights is not linear. It can also be observed that,
after increasing the social weight ρ2, the robot ini-
tially located at the sub-optimal solution converges in
a more intensive way, i.e., the radius of the spiral at



J Intell Robot Syst (2014) 76:353–381 367

a) b) 

c) d) 

Fig. 7 Analysis of real robot constraints in a swarm of 2 robots.
a center-of-mass trajectories in phase space to evaluate α; b
Euclidean distance between robots in phase space to evaluate

the relation between ρ1 and ρ2; c distance from the worst per-
forming robot to the obstacle in phase space to evaluate ρ3; d
Euclidean distance between robots in phase space to evaluate ρ4

the convergence point is smaller for higher ρ2 val-
ues. Hence, the exploitation behavior increases as the
distance between robots decreases, thus compromis-
ing the performance of the swarm. Moreover, robots’
velocities do not directly depend on the relation
between ρ1 and ρ2, since the relative velocity between
robots reached a maximum velocity of approximately
0.45 m.s−1 in all three (ρ1, ρ2) combinations.

However, independently of (ρ1, ρ2) combinations,
robots may be unable to complete their main mission
if they cannot efficiently avoid obstacles. The pres-
ence or absence of obstacles can affect the efficiency
of the RDPSO - one set of parameters may result in
a faster convergence but may fail in the presence of

obstacles or it may increase obstacles susceptibility
though swarms may be more resilient. As previously
explained, a robot is able to avoid obstacles due to
a repulsive force based on a monotonic and positive
sensing function g(xn[t]) that depends on the distance
between the robot and the obstacle. To better under-
stand the relation between the obstacle susceptibility
weight ρ3 and the other RDPSO parameters, one of
the robots was placed in the optimal position (i.e., the
brighter site) and the other robot was placed 1 meter
away from it. Also, an obstacle was placed halfway the
path described by the latter robot toward the optimal
position (Fig. 6). Robots were programmed to detect
obstacles 0.5 m away from them, i.e., rs = 0.5. In
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Fig. 8 Experimental setup.
a Enclosed arena with 2
swarms (different colors) of
4 eSwarBots each; b Virtual
representation of the target
distribution (i.e., intensity of
light) retrieved sweeping the
scenario with a single robot

a) b)

order to allow the manipulation of ρ3 within a larger
range while respecting condition (21), ρ4 = 0.1 and
ρT = 0.7 with (ρ1, ρ2) = (0.2, 0.5), i.e., the social
component influence is stronger than the cognitive
one.

The obstacle susceptibility of the robot was eval-
uated fixing α = 0.632 for ρ2 = 0.4, 0.8, 1.2.
Observing Fig. 7c, one can conclude that the worst
performing robot gets stuck (and even sometimes col-
lides) in the vicinity of the obstacle, only for an
obstacle susceptibility weight of ρ3 = 0.4. For any of
the other two situations, the robot is able to circum-
vent the obstacle, thus reaching the optimal solution.
However, notwithstanding the same final results for
both ρ3 = 0.8 and ρ3 = 1.2, as ρ3 increases the robot
presents a more chaotic behavior, i.e., more oscilla-
tory. For ρ3 = 1.2 the robot first moves 1 m and a half
away from its current location avoiding the obstacle in
an inadequate way.

Finally, and to completely fulfill MRS require-
ments, a way to ensure the MANET connectivity
needs to be considered. Robots within the same
swarm should spread out as much as possible in
order to improve the convergence rate of the RDPSO
algorithm. However, they must keep a certain range
between themselves. Therefore, one needs to find a
suitable tradeoff between the enforcing communica-
tion component ρ4 and the mission parameters (i.e.,
ρ1 and ρ2), since each robot has to plan its moves
while maintaining the MANET connectivity. As pre-
viously presented, the RDPSO takes use of the adja-
cency matrix A that directly depends on link matrix
L = {lij } to identify the minimum/maximum dis-
tance/signal quality of each line, thus returning the
position of the nearest neighbor in which a robot needs
to ensure connectivity. In this experiment, one of the
robots was placed at a distance of 0.5 m away from

the global best position, thus being attracted to it. The
other robot was placed 0.5 m away from the first robot
(1 m away from the optimal solution, i.e., global best
position) and was not allowed to move, thus simu-
lating an internal failure (e.g., mechanical flaw). To
maintain the MANET connectivity, the robots must
keep a maximum distance between them of dmax =
0.5 meter. The distance between robots, x12, is eval-
uated by manipulating ρ4 while satisfying condition
(24), with ρ3 = 0.1, (ρ1, ρ2) = (0.2, 0.5) and α =
0.632. The enforcing communication component was
set as ρ4 = 0.4, 0.8, 1.2. It may be observed in Fig. 7d
that, for any ρ4, the robot presents a spiral convergence
in dmax vicinities. However, as increases, the conver-
gence of the robot toward dmax also increases (the
center of the spiral approximates dmax). For ρ4 = 0.4
the robot converges toward a distance superior to dmax

with a larger spiral radius while trying to get closer
to the solution. For ρ4 = 1.2 the robot ignores the
solution and hardly moves from its initial position.

Given the above convergence analysis, next section
presents experimental results obtained using both real
and simulated robots to evaluate the RDPSO.

5 Experimental Evaluation

The previous section shows the theoretical conver-
gence of the RDPSO without considering the mech-
anism of social exclusion. Nevertheless, this mech-
anism allows for a larger diversity of the solution,
thus providing an escape to sup-optimal solutions that
could be wrongly taken as the optimal one (i.e., robots
would think that they reached the equilibrium point
x∗n). Therefore, to further validate the claims around
the RDPSO and based on the convergence analysis
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previously presented, this section provides experimen-
tal results obtained using both real and simulated
robots.1

5.1 Evaluation on eSwarBots

In this section, the effectiveness of using the RDPSO
is explored on swarms of eSwarBots, while perform-
ing a collective foraging task with local and global
information under communication constraints. Since
the RDPSO is a stochastic algorithm, it may lead
to a different trajectory convergence whenever it is
executed. Therefore, test groups of 20 trials of 180
seconds each were considered for NT = 8, 12 eSwar-
Bots. A minimum, initial and maximum number of 1,
2 and 3 swarms were used. The maximum travelled
distance between iterations was set as 0.15 m, i.e.,
max |xn[t + 1] − xn[t]| = 0.15.

It is noteworthy that trying to maintain the network
connectivity by only taking into account the commu-
nication range dmax does not match reality since the
propagation model is more complex, i.e., the signal
depends not only on the distance but also on the mul-
tiple paths from walls and other obstacles. However,
in simulation or small and obstacle free scenarios, the
communication distance is a good approach and it is
easier to implement. Therefore, for the sake of sim-
plicity and without lack of generality, the distance
criterion dmax was used to model communication
constraints, with dmax = 0.5 m.

The experimental environment was the same
used to assert the relation between parameters in
Section 4.4 and is represented in Fig. 8a. eSwarBots
are equipped with RGB-LEDs that allow represent-
ing a wide range of different colors to depict dif-
ferent swarms. Active swarms are identified using
the primary colors red, green and blue in which the
last one only appears when a third swarm is cre-
ated (cf., Table 1 in Section 3.5). Robots within
the socially excluded swarm are identified with a
white light. Despite being an obstacle free scenario
of 2.55 × 2.45 m, the robots themselves act as
dynamic obstacles - note that a maximum number
of 12 robots correspond to a population density of

1Videos from real and simulated experiments are available at
http://paloma.isr.uc.pt/$\sim$micaelcouceiro/media/media.htm

approximately 2 robots×m−2. Inter-robot communi-
cation to share positions and individual solutions were
carried out using ZigBee 802.15.4 wireless protocol.
Since eSwarBots are equipped with XBee modules
that allow a maximum communication range larger
than the whole scenario, robots were provided with
a list of their teammates’ addresses in order to sim-
ulate the ad-hoc multi-hop network communication
with limited range. At each trial, robots were manu-
ally deployed on the scenario in a spiral manner (as
previously presented in Section 3.4 and [7]) while pre-
serving the maximum communication distance dmax .

As Fig. 8b depicts, the objective function is repre-
sented by a sub-optimal and an optimal solution. The
main objective of robots is to find the brighter site
(optimal solution). The intensity values F(x, y) rep-
resented in Fig. 8b were obtained sweeping the whole
scenario with a single robot in which the light sensor
was connected to a 10-bit analog input, thus offering
a resolution of approximately 5 mV. To improve the
interpretation of the algorithm performance, results
were normalized in a way that the objective of the
robotic teams was to find the optimal solution of
f (x, y) = 1.

The algorithm parameters were chosen in order to
satisfy the conditions presented previously. However,
to further explore the relation between parameters
and population size, two different sets of values were
analyzed (Table 2).

Each set of parameters Sj , j = 1, 2, is defined
by the tuple {α, ρ1, ρ2, ρ3, ρ4}. Hence, the only dif-
ference between both sets S1 and S2 is how RDPSO
parameters are defined within the particular attraction
domain Ap previously represented in Fig. 5. The first
set (S1) is more conservative with higher ρ3 and ρ4

than S2, thus allowing robots to preserve the MANET
connectivity and avoid obstacles collision at any cost.
The second set (S2) is greedier with higher ρ1 and ρ2

than S1, wherein robots’ primary concern is to find the
optimal solution (even if some collisions or MANET
ruptures occur). Figure 9 depicts the performance of
the algorithm, by changing the total number of robots
NT and the set of parameters. Since these experiments
represent a search task, it is necessary to evaluate the
completeness (i.e., final solution) and speed of the
mission (i.e., runtime). Therefore, the median of the
best solution in the 20 trials was taken as a final output
for each different condition.

http://paloma.isr.uc.pt/$sim $micaelcouceiro/media/media.htm
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Table 2 Two sets of RDPSO parameters inside the particular attraction domain Ap = {α, ρi : 0 <
∑4

i=1 ρi ≤ 2, 0 < α ≤
0.6 ∧ 15

4 α − 9
4 <

∑4
i=1 ρi ≤ 2, 0.6 < α ≤ 0.632; i = 1, 2, 3, 4}

Parameters α ρ1 ρ2 ρ3 ρ4

S1 0.632 0.100 0.300 0.790 0.790

S2 0.632 0.200 0.400 0.690 0.690

Analyzing Fig. 9, it is clear that the proposed mis-
sion can be accomplished by any number of robots
between 8 and 12. In fact, independent of on the
number of robots, teams converge to the solution in
approximately 90 % of the experiments. The charts
also show that, independently of the set of parameters,
increasing the number of robots from 8 to 12 decreases
the time needed to find the solution. A population of
8 robots, for both sets of parameters, takes approxi-
mately 119 (S1) and 138 (S2) seconds to converge to
the optimal solution. On the other hand, a population
of 12 robots takes approximately 56 (S1) and 112 (S2)

seconds to converge. Yet, either with 8 or 12 robots,
robots seems to perform better using the first set of
parameters. In other words, using a greedier behav-
ior (S2) over a conservative one (S1), in which robots
prioritize finding the optimal solution over maintain-
ing the MANET connectivity and obstacles avoidance,
decreases the RDPSO performance.

Another important factor is that some robots of a
given swarm are unable to converge to the final solu-
tion when one robot of the same swarm finds it. This
issue is related with odometry limitations of the plat-
forms which results in the accumulation of positioning

errors. The use of encoders, such as the ones imple-
mented in these robots, is a classical method for their
low-cost and simplicity of use. However, the errors,
inherent to the use of such encoders, are cumulative,
which makes it difficult for the robots to complete the
proposed odometry objectives accurately. However, it
is noteworthy that all robots within the same swarm
agree with the best solution.

Nevertheless, analyzing swarm algorithms, as the
RDPSO, within small populations of 8 or 12 robots
may not represent the required collective performance.
In fact, how well can a population of up to 12 robots
reveal the RDPSO performance if swarm algorithms
usually need a large number of agents (i.e., dozens,
hundreds, or even thousands) for the collective intelli-
gence to emerge (cf., [37])? Also, is it enough to assess
the RDPSO performance within the small proposed
scenario under only one target distribution?

To overcome such weaknesses, next section
presents computational experiments using a larger
population of simulated robots within larger scenar-
ios under different kinds of benchmark functions (i.e.,
target distribution) commonly used in optimization
algorithms.
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Fig. 9 RDPSO evaluation changing the number of robots NT and set of parameters: a S1; b S2
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5.2 Computational Experiments

The use of simulated robots instead of the physical
ones was necessary to further evaluate the RDPSO
with arbitrarily large populations of robots. All of the
experiments were carried out in a simulated scenario
of 300 × 300 m with obstacles randomly deployed at
each trial, in which three 2-dimensional benchmark
cost functions Fε(x, y), ε = 1, 2, 3, were defined
where x and y-axis represent the planar coordinates
in meters (Fig. 10): i) Gaussian (ε = 1); ii) Rastrigin
(ε = 2); and iii) Rosenbrock (ε = 3) [38].

In order to improve the interpretation of the algo-
rithm performance, results were once again normal-
ized in a way that the objective of robotic teams
was to maximize fε(x, y), i.e., minimize the original
benchmark functions Fε(x, y), thus finding the opti-
mal solution of fε(x, y) = 1, while avoiding obstacles
and ensuring the MANET connectivity:

fε(x, y) = Fε(x, y)− maxFε(x, y)

minFε(x, y)− maxFε(x, y)
. (25)

Test groups of 100 trials of 500 iterations each were
considered for NT = 25, 50, 100 robots. Also, a min-
imum, initial and maximum number of 2, 5 and 8

swarms were used. The maximum travelled distance
between iterations was set as 0.5 m, i.e.,

max |xn[t + 1] − xn[t]| = 0.5

while the maximum communication distance between
robots was set to dmax = 30 m. The maximum
range was considered to be 30 m since it is inside
ZigBee typical range [7] and equivalent to the max-
imum communication distance in urban environment
(i.e., with obstacles) of XBee OEM RF modules from
Maxstream used in eSwarBots platforms [23]. The
same two sets of parameters S1 and S2 presented in
Table 2 were chosen.

Figure 11 depicts the performance of the algorithm
by changing the total number of robots NT , the objec-
tive function fε(x, y) and the set of parameters S1 and
S2. Similarly to the experiments with real robots, the
median of the best solution in the 100 simulation was
taken as a final output for each different condition.

In the Gaussian function f1(x, y), robots seem to
perform well (Fig. 11a–b). The reason may be that
f1(x, y) only presents 2 sub-optimal regions that are
far apart from the optimal solution (Fig. 10a).

In the Rastrigin function f2(x, y) robots also seem
to have a good performance (Fig. 11c–d). It is note-
worthy that this function presents a difficult problem
due to the relation between the size of the search space

a) b) 

c)

optimal solution 

Fig. 10 Virtual scenario with obstacles and 25 robots divided into 5 swarms. a Gaussian f1(x, y); b Rastrigin f2(x, y); and c
Rosenbrock f3(x, y) [38]
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Fig. 11 RDPSO evaluation changing the number of robots NT for each objective function and set of parameters: a f1(x, y) and S1;
b f1(x, y) and S2; c f2(x, y) and S1; d f2(x, y) and S2; e f3(x, y) and S1; and f f3(x, y) and S2

and the number of sub-optimal solutions (Fig. 10b). In
fact, when attempting to solve the Rastrigin function,
most optimization or foraging algorithms easily fall

into sub-optimal solutions. However, as the RDPSO
is capable of maintaining a large diversity, it returns
better results than expected.
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Finally, in the Rosenbrock function f3(x, y), the
optimal solution is inside a long, narrow, parabolic
shaped flat valley (Fig. 10c). Robots are able to easily
discover the valley (values above 0.9) but they seem to
have some minor problems in finding the optimal solu-
tion (Fig. 11e–f). Contrarily to the previous functions
(i.e., f1(x, y) and f2(x, y)) in which the target dis-
tribution is very common, in foraging tasks requiring
of robots to find confined target locations (e.g., toxic
waste cleanup), the Rosenbrock function f3(x, y) is
more like olfactory-based swarming. In olfactory-
based swarming a plume is subject to diffusion and
airflow, which increases the difficulty in finding the
initial source (e.g., detection of hazardous gases) [39].
Nevertheless, independent of of the target distribution,
the median value of the solution was always greater
than 0.95 (i.e., optimal solution vicinities) regardless
of the number of robots.

It should also be noted that the second set (S2)

presents worse results than the first one (S1) in most
situations (e.g., Fig. 11e–f). In other words, a greedy
behavior wherein robots give too much importance
on finding the optimal solution may jeopardize the
performance of the team since some collisions or com-
munication ruptures may delay or even interfere with
the collective intelligence.

This phenomenon may be explained due to the pri-
oritization of the robot’s objectives. Although robotic
teams are designed for specific applications (e.g., find
a gas leak), the requirements to fulfill such applica-
tions (e.g., ensuring MANET connectivity) need to
be ensured for collective cooperation to emerge. Nev-
ertheless, it is impossible to withdraw more specific
conclusions about the influence of using a different
parameterization and/or population on the algorithm
performance by only looking at the median of the best
solution over time. Therefore, a more exhaustive sta-
tistical analysis needs to be carried out so as to assist
the design of robotics network dynamic partitioning
algorithms for similar scenarios.

A previous study [40] presented a statistical anal-
ysis of the RDPSO using the Multivariate Analysis
of Variance technique (MANOVA) [41, 42] in order
to evaluate the relationship between the population of
robots and their maximum communication distance.
Similarly, we herein present a MANOVA analysis to
further understand the impact of using a conserva-
tive and greedy behavior (i.e., set of parameters) while
increasing the number of robots within the population.

Therefore, the significance of the set of parameters
and the number of robots (i.e., independent variables)
to the final solution and the runtime (i.e., dependent
variables) was analyzed using a two-way MANOVA
for each target distribution (i.e., objective function)
after checking the assumptions of multivariate nor-
mality and homogeneity of variance/covariance. The
assumption of normality for each of the univariate
dependent variables was examined using univariate
tests of Kolmogorov-Smirnov (p − value < 0.05).
The univariate normality of each dependent variable
in the three objective functions has not been verified.
However, since the number of samples is over 30,
this statement was assumed[42, 43] using the Central
Limit Theorem [41, 42]. Consequently, the assump-
tion of multivariate normality was validated [41, 42].

The assumption about the homogeneity of vari-
ance/covariance matrix in each group was examined
with the Box’s M Test in the three objective functions.
Although the homogeneity of variance/covariance
matrices has not been verified for the three objective
functions (i.e., p − value = 0.001), the MANOVA
technique is robust to this violation because all the
samples have the same size [41, 42]. When the
MANOVA detected significant statistical differences,
we proceeded to the ANOVA for each dependent vari-
able followed by the Tukey’s HSD Post Hoc. The
estimation of the effect size (i.e., the proportion of
the variance in the dependent variables that can be
explained by the independent variables) was done
according to Maroco [41] and Pallant [42]. This anal-
ysis was performed using IBM SPSS Statistics for
a significance level of 5 %. As Table 3 depicts, the
MANOVA revealed that the number of robots had
a medium effect and significant on the multivariate
composite independently on the objective function
(with p − value = 0.001 and Power = 1.000). This
indicates that the population of robots, as expected,
has a crucial influence in the RDPSO performance.

Table 4 shows that the set of parameters had a
small effect, yet significant, on the multivariate com-
posite except for the Gaussian function (f1(x, y)). In

Table 3 Multivariate test for the number of robots

f1(x, y) f2(x, y) f3(x, y)

Pillai’s Trace 0.139 0.201 0.203

Partial Eta Squared η2
p 0.069 0.101 0.117
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Table 4 Multivariate test for the set of parameters

f1(x, y) f2(x, y) f3(x, y)

Pillai’s Trace 0.006 0.015 0.045

Partial Eta Squared η2
p 0.006 0.015 0.045

p-value 0.192 0.011 0.001

Power 0.350 0.800 0.998

this last one, the different set of parameters does not
present any statistically significant differences. Hence,
the proposed set of parameters seems to have a minor
influence over the RDPSO performance. However, at
this point, it is still not clear if it has a positive or
negative influence.

Finally, the interaction between the two indepen-
dent variables only had a small effect, yet significant,
on the multivariate composite in Rosenbrock function
(f3(x, y)) (Pillai’s Trace = 0.032; η2

p = 0.016;p −
value = 0.001;Power = 0.957).

After observing the multivariate significance in the
number of robots and set of parameters, an univariate
ANOVA for each dependent variable followed by the
Tukey’s HSD Test was carried out (Fig. 12). It can be
concluded that, in general, increasing the number of
robots from 50 to 100, does not significantly improve
the final solution of the RDPSO for such applications
and target distribution. In other words, the algorithm is
able to find the optimal solution with 50 robots in most
situations. However, the runtime improves signifi-
cantly as the number of robots increases (Fig. 12d–f).
There is an almost inverse linear relationship between
the runtime and the number of robots.

As for the set of parameters, the performance of
the RDPSO, for both final solution and runtime, does
not follow any tendency. For instance, a greedy behav-
ior (S2) decreases the runtime for functions f1(x, y)

and f2(x, y) and increases it for function f3(x, y)

(Fig. 12d–f). Despite using similar parameter val-
ues inside the previously defined particular attraction
domain Ap (Fig. 5), it can be observed that small dif-
ferences between both sets may result in considerable
differences, mainly, in the algorithm convergence rate
(i.e., runtime).

On the other hand, in most situations, one can
slightly overcome the negative effect of a poor choice
of parameters (within Ap), increasing the population
of robots. However, for the second set of parameters

(S2), robots happen to collide and sometimes they can-
not maintain the maximum communication distance
between them. Even within the second set, this could
be avoided if parameters were not constant values
throughout the search. In other words, there are some
situations in which robots should adapt their behavior
(e.g., [44]). For instance, if a robot is near collision,
the obstacle susceptibility weight ρ3 should instan-
taneously increase, hence ignoring the mission and
communication constraints.

To go a step further into evaluating the parameter-
ized RDPSO, next section presents simulation experi-
ments so as to experimentally assess and compare its
performance with four state-of-the-art algorithms in
an exploration task.

5.3 Benchmark on MRSim

The Multi-Robot Simulator (MRSim)2 was used to
compare the RDPSO algorithm with four state-of-the-
art swarm techniques, namely, the Extended Particle
Swarm Optimization (EPSO) [14, 15], the Physically-
embedded Particle Swarm Optimization (PPSO) [17,
46], the Glowworm Swarm Optimization (GSO) [47,
48], and the Aggregations of Foraging Swarm (AFS)
[49, 50]. MRSim was initially created to evaluate sim-
ulation experiments under search and rescue robotics.
As such, it has been successively improved consid-
ering several real-world phenomena such as radio
frequency (RF) propagation. MRSim is an evolution
of the Autonomous mobile robotics toolbox SIM-
ROBOT (SIMulated ROBOTs) previously developed
for an obsolete version of MatLab.3 The simula-
tor was completely remodelled for the newer Mat-
Lab version and new features were included, such
as mapping and inter-robot communication. Besides
that, MRSim also allows adding a monochromatic
bitmap as a planar scenario changing its properties
(e.g., obstacles, size, among others), adding features
of each swarm robotic technique (e.g., robotic popula-
tion, maximum communication range, among others)
and edit robots’ model (e.g., maximum velocity, type

2http://www.mathworks.com/matlabcentral/fileexchange/38409-
mrsim-multi-robot-simulator-v1-0
3http://www.uamt.feec.vutbr.cz/robotics/simulations/amrt/
simrobot-en.html

http://www.mathworks.com/matlabcentral/fileexchange/38409-mrsim-multi-robot-simulator-v1-0
http://www.mathworks.com/matlabcentral/fileexchange/38409-mrsim-multi-robot-simulator-v1-0
http://www.uamt.feec.vutbr.cz/robotics/simulations/amrt/simrobot-en.html
http://www.uamt.feec.vutbr.cz/robotics/simulations/amrt/simrobot-en.html
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Fig. 12 Estimated marginal means of the RDPSO performance for the: a final solution using f1(x, y); b final solution using f2(x, y);
c final solution using f3(x, y); d runtime using f1(x, y); e runtime using f2(x, y); f runtime using f3(x, y)

of sensors, among others). This simulator was first
evaluated in the context of the CHOPIN project, thus
comparing decentralized and centralized versions of
both RDPSO for exploration purposes [51].

Figure 13 depicts the MRSim interface with a sim-
ulation trial with robots using the RDPSO algorithm to
collectively explore the whole scenario of a large base-
ment garage environment - the garage of the Institute
of Systems and Robotics at University of Coimbra,
with an area of A = 2975m2.

All algorithms were evaluated while changing
the number of robots within the population NT =
10, 20, 30 and the maximum communication range
dmax = 30, 100 m. The communication range was
based on common values presented in the literature
for both ZigBee and WiFi communication [7]. To sig-
nificantly test and compare the different algorithms,
30 trials of 500 iterations for each (NT , dmax) com-
bination were conducted. Also, to perform a straight-
forward comparison between the algorithms, robots
were randomly deployed in the scenario presented in
Fig. 13. Exploring and building a map of the scenario
was used as mission objective to evaluate the five algo-
rithms. Hence, the objective function of the team of

robots was defined as a cost function in which robots
need to minimize the map’s entropy, i.e., the uncer-
tainty about the map. Please refer to Rocha et al. for a
more detailed description [52]. Each robot n computes
its best frontier cell as:

ms
i = argmax(mi∈N(xn[t ],Rw)

× [�(xn[t], mi) ‖ −→∇ H(mi) ‖], (26)

wherein N(xn[t], Rw) represents the set of frontier
cells located in the neighbourhood of robot n with
sensing radius Rw . The coefficient �(xn[t], mi) ∈
[0, 1] measures if the cell mi is in line-of-sight from a
position xn[t], which also implies that cell mi is likely
to be empty. Moreover, the entropy of the cell mi is
represented by H(mi) and may be calculated as:

H(mi) = −p(mi)log[p(mi)]− (1−p(mi ))log2[1−p(mi )],
(27)

being p(mi) the probability that a grid cell is occu-
pied. The performance metric used is the exploration
ratio of the scenario over time (number of iterations).
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Entrance 1 

ISR-UC garage

Collective Mapping

Fig. 13 MatLab Multi-Robot Simulator (MRSim). Illustration of one trial with 10 robots performing the collective mapping of an
unknown scenario under the influence of the RDPSO algorithm [51]

The exploration ratio may be obtained by normalizing
the mapped scenario as it follows:

ηexp[t] = Ae[t]
Aa

, (28)

wherein Aa is the useful area of the scenario only con-
sidering free cells, while Ae[t] is the scenario explored
up to time, or iteration, t .

As Fig. 14 depicts, the median of the best solu-
tion over the 500 trials was taken as the final output
for each (NT , dmax) combination. As it is possible to
observe, the RDPSO outperforms the other methods
for all (NT , dmax) configurations tested. Nevertheless,
such difference decreases especially as the popula-
tion of robots increases when compared to the AFS
and the GSO. For instance, for the configuration
of (NT , dmax) = (30, 30), i.e., Fig. 14e, the GSO
presents a better performance than the RDPSO during
the first iterations while the AFS closely follows the
same performance as the RDPSO.

To facilitate a straightforward comparison and
since some of the algorithms present a similar perfor-
mance, the area under the curve (AUC) may be used.
This is a common measure used to analyse the accu-
racy of receiver operating characteristic (ROC) curves
that represent the performance of classifiers. As the
exploration ratio ηexp[t] is a discrete function with
t ∈ N0, the AUC may be calculated by the sum of
each value over the 500 iterations. Moreover, one can

normalize the AUC by dividing it by 500, thus result-
ing in a representation of the probability that a team
of robots under a given algorithm has to explore the
whole scenario. Hence, the normalized AUC may be
calculated as:

AUC = 1

500

500∑

k=0

ηexp[k], (29)

The AUC of each set of trials is represented using
boxplot charts. As one may observe in Fig. 15, the
influence of the population is more significant than
the communication range. This should be expected as
swarm intelligent algorithms perform well for larger
population of robots, i.e., it is possible to observe a
higher degree of collective emergent behaviours as the
population grows [37]. Nevertheless, it is still possi-
ble to observe that, in most methods, an increase in
the maximum communication range results in a minor
improvement in the exploration ratio accuracy and a
significant one in its precision, i.e., smaller interquar-
tile range. In other words, the outcome becomes more
predictable and regular as the maximum commu-
nication range increases. Regarding the comparison
between algorithms, it is possible to observe that both
PPSO and EPSO present a similar performance with
a probability of successfully exploring the whole sce-
nario of almost 70 % for a population of 30 robots.
The same may be observed for both AFS and GSO
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Fig. 14 Median of the exploration ratio ηexp[t] over the 500 iteration for each method. a (NT , dmax ) = (10, 30); b (NT , dmax) =
(10, 100); c (NT , dmax) = (20, 30); d (NT , dmax ) = (20, 100); e (NT , dmax ) = (30, 30); f (NT , dmax) = (30, 100)

algorithms, in which a superior performance of almost
75 % may be observed for such population. Finally,
the RDPSO outperforms the other methods depict-
ing a probability of successfully exploring the whole
scenario of approximately 80 % for the maximum
population. This 5 % difference may be generalized

for all other (NT , dmax) configurations tested. Never-
theless, such a difference is not linear and although
the GSO presents a slightly better performance than
the AFS for smaller populations, it seems that the
AFS is able to overcome the GSO as the number of
robots increases. Also, and as Fig. 15 depicts, the
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Fig. 15 AUC of the exploration ratio ηexp[t] over the 500 iteration for each method. a (NT , dmax) = (10, 30); b (NT , dmax ) =
(10, 100); c (NT , dmax ) = (20, 30); d (NT , dmax) = (20, 100); e (NT , dmax) = (30, 30); f (NT , dmax) = (30, 100)

AFS presents a similar performance to the RDPSO for

larger populations of robots.

6 Discussion

This paper intended to promote the tuning of the

RDPSO collective behavior by presenting a rationale

behind its parameterization. To that end, Section 4

focused on studying the stability of the RDPSO algo-
rithm so as to define a set of conditions where the
convergence of robots toward the solution is guar-
anteed. By doing so, it was possible to obtain an
attraction domain that, for all intents and purposes,
simply confines the relationship between the RDPSO
parameters to a small region (Fig. 5). This is highly
important since it significantly reduces the complexity
on settling the RDPSO algorithm, without resorting
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to arbitrary parameters that would not ensure its con-
vergence. The results obtained in the previous section
allow for the proposal of some guidelines in the
process of designing robotics network dynamic parti-
tioning algorithms for similar scenarios. For instance,
a more conservative behavior with special attention
to obstacle avoidance and communication constraints
(S1) may lead to better results in both terms of per-
formance and runtime as the collective performance
highly depends on the information shared between
robots (S2). Regarding the number of robots, it was
expected that this would be a crucial variable in
designing swarm algorithms. A better performance is
achieved in a short amount of time as the number
of robots increases. Moreover, a larger population of
robots does not significantly disturb the communica-
tion network as the RDPSO is endowed with dynamic
partitioning properties. However, if the main objec-
tive resides in fulfilling the mission regardless on the
time needed, then a rationale on the size of the popu-
lation of robots needs to be carried out. For instance,
for the three simulated scenarios of 300 × 300 m,
a number of 50 robots proves to be enough regard-
less of the target distribution and obstacles’ location
(Section 5.2). Going deeper into the “rabbit hole”,
a large number of simulation experiments was con-
ducted to study the effect of the number of robots and
the communication constraints in the RDPSO, thus
comparing it with four state-of-the-art alternatives
(Section 5.3). The mission consisted of exploring and
mapping a 2000 m2 scenario in which robots needed
to minimize the map’s entropy [52]. More than to just
state the obvious phenomenon that a larger popula-
tion of robots improves the overall performance, those
experiments were useful to understand the influence
of a more constrained communication network on the
five swarm algorithms. Through Fig. 15 it was pos-
sible to observe a lower variability of the exploration
ratio for a larger maximum communication distance
feasible between robots, i.e., the outcome became
more consistent for a less constrained communica-
tion network. Such phenomenon was more perceptible
using the EPSO and PPSO algorithms, thus suggest-
ing their higher susceptibility over the communication
constraints. Associating this aspect to the fact that
both algorithms work on a broadcast communication
basis, the authors dissuade the use of those algorithms
on applications that may require a larger number of
robots (above 20 in the experiments in Section 5.3)

or too limited communication constraints (bellow an
inter-robot distance of 100 m in the experiments in
Section 5.3).

7 Conclusion

The proposed RDPSO algorithm is a sociobiolog-
ically inspired parameterized swarm algorithm that
takes into account real-world MRS characteristics.
This paper presented the convergence analysis of the
algorithm, studying its stability in such a way that
parameters may be configured within a small attrac-
tion domain. Furthermore, an extended convergence
analysis based on real robot constraints is conducted,
thus decreasing the size of the attraction domain. A
swarm of two physical platforms was used to eval-
uate constraints such as robot dynamics, obstacles
and communication. Experimental results show that
the algorithm converges in most situations regardless
of the number of robots and set of parameters used.
Also, the distribution of target locations, i.e., main
objective function, does not greatly affect the algo-
rithm performance. However, the algorithm exhibits
some minor collisions and communication ruptures
between robots when their behavior is greedier as
this manifests in an inferior performance in some
situations. To further evaluate the herein proposed
strategy, this paper outlined an initial benchmark of
the RDPSO by comparing it with the outcome from
other swarm robotic algorithms under different con-
figurations (e.g., number of robots). Such results can
be used to apply swarm robotic concepts to real
world applications such as search-and-rescue. One
of the future improvements will be to extend the
RDPSO with adaptive parameterization since robots
may need to change dynamically their behavior during
the search missions, based on contextual information.
Therefore, by systematically adjusting the parame-
ters within the defined attraction domain, the RDPSO
should be extended in order to control the swarm sus-
ceptibility to the main mission, obstacle avoidance and
communication constraint.
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