Skip to main content
Log in

Experimental Study of an EMG-Controlled 5-DOF Anthropomorphic Prosthetic Hand for Motion Restoration

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we attempted to evaluate the performance of an electromyography (EMG)-controlled 5-DOF prosthetic hand on ten transradial amputees. The proposed prosthesis is composed of a five-fingered hand, a passive wrist, and a customized socket for each subject. The EMG control methods included both a commonly used pattern recognition-based scheme (DD-SVM) and a novel digital encoding strategy (double-channel template matching (DCTM)). A virtual 3D hand platform was developed for training the subjects and rapidly testing the control methods. For each subject, the performance of the EMG control methods was firstly measured by off-line classification accuracy; then, according to the accuracy, a particular control method was selected and embedded in the EMG controller for further validation on ordinary daily life activities. Our experiments were conducted to test not only the hand’s grasp ability but also other multifinger cooperation skills. The result indicated that the subjects of rich control experience can accomplish several intuitive motion control over their hands. However, the kinds of the motions and their relative recognition accuracy may depend on some individual differences, such as the amputation level, the activity of the residual nerve-muscle system, and the richness of control experience. Meanwhile, the proposed digital encoding method, DCTM, which only utilized two channels of EMG, was necessary for those amputees with few available control signals. This paper suggested that the EMG control method should be differently considered according to the particular condition of each subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkins, D. J., Heard, D. C. Y., Donovan, W. H.: Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J. Prosthet. Orthot 8(1), 2–11 (1996)

    Article  Google Scholar 

  2. Zollo, L., Roccella, S., Guglielmelli, E., Carrozza, M. C., Dario, P.: Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE-ASME T Mech. 12(4), 418–429 (2007)

    Article  Google Scholar 

  3. Cipriani, C., Controzzi, M., Carrozza, M.C.: Objectives, criteria and methods for the design of the SmartHand transradial prosthesis. Robotica. 28(6), 919–927 (2010)

    Article  Google Scholar 

  4. Dalley, S. A., Wiste, T. E., Withrow, T. J., Goldfarb, M.: Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation. IEEE-ASME T Mech. 14(6), 699–706 (2009)

    Article  Google Scholar 

  5. Fite, K. B., Withrow, T. J., Shen, X., Keith, W. W., Jason, E. M., Michael, G.: A gas-actuated anthropomorphic prosthesis for transhumeral amputees. IEEE T. Robot. 24(1), 159–169 (2008)

    Article  Google Scholar 

  6. Palli, G., Borghesan, G., Melchiorri, C.: Modeling, identification, and control of tendon-based actuation systems. IEEE T. Robot. 28(2), 277–290 (2012)

    Article  Google Scholar 

  7. Arieta, H., Katoh, R., Yokoi, H., Wenwei, Y.: Development of a multi-DOF electromyography prosthetic system using the adaptive joint mechanism. Appl. Bionics Biomech. 3(2), 101–110 (2006)

    Article  Google Scholar 

  8. Gaiser, I., Pylatiuk, C., Schulz, S., Kargov, A., Oberle, R., Werner, T.: The Fluidhand III: a multifunctional prosthetic hand. J. Prosthet. Orthot. 21(2), 91–96 (2009)

    Article  Google Scholar 

  9. Kuiken, T. A., Li, G., Lock, B. A., Lipschutz, R. D., Miller, L. A., Stubblefield, K. A., Englehart, K.: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA-J Am. Med. Assoc. 301(6), 619–628 (2009)

    Article  Google Scholar 

  10. Christine, C.: Prosthetic hands from touch bionics. Ind. Robot: An Int. J. 35(4), 290–293 (2008)

    Article  Google Scholar 

  11. Medynski, C., Rattray, B.: Bebionic prosthetic design. In: Proceedings of the 2011 MyoElectric Controls/Powered Prosthetics Symposium. Fredericton, Canada, August 14–19 (2011)

  12. Belter, J. T., Dollar, A. M.: Performance characteristics of anthropomorphic prosthetic hands. In: Paper presented at the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich (2011)

  13. Zhao, J., Xie, Z., Jiang, L., Cai, H., Liu, H., Hirzinger, G.: Levenberg-Marquardt based neural network control for a five-fingered prosthetic hand. In: Proceedings of IEEE International Conference Robotics, Barcelona, pp 4482–4487 (2005)

  14. Hai, H., Yong-Jie, P., Li, J., Shao-Wei, F., Xin-Qing, W., Hong, L.: Underactuated hand dynamic modeling, its real-time simulation, and control. Int. J. Hum. Robot. 7(4), 609–634 (2010)

    Article  Google Scholar 

  15. Yang, D., Zhao, J., Gu, Y., Wang, X., Li, N., Jiang, L., Liu, H., Huang, H., Zhao, D.: An anthropomorphic robot hand developed based on underactuated mechanism and controlled by EMG signals. J Bionic. Eng. 6(3), 255–263 (2009)

    Article  Google Scholar 

  16. Wang, X., Liu, Y., Jiang, L., Yang, D., Li, N., Liu, H., Huang, H.: Design and control of a coupling mechanism-based prosthetic hand. J Shanghai Jiaotong Univ. (Sci.) 15(5), 571–577 (2010)

    Article  Google Scholar 

  17. Li, N., Jiang, L., Yang, D., Wang, X., Fan, S., Liu, H.: Development of an anthropomorphic prosthetic hand for man-machine interaction. Lect. Notes Comput. Sci. 6424 LNAI(PART I), 38–46 (2010)

    Article  Google Scholar 

  18. Yang, D., Zhao, J., Gu, Y., Jiang, L., Liu, H.: EMG pattern recognition and grasping force estimation: improvement to the myocontrol of multi-DOF prosthetic hands. In: Proceedings of IEEE/RSJ International Conference Intelligent and Robotic Systems, St. Louis, Oct. 11–15, pp. 516–521 (2009)

  19. Bitzer, S., Van der Smagt, P.: Learning EMG control of a robotic hand: towards active prostheses. In: Proceedings IEEE Internation Conference on Robotics and Automation, Orlando, pp 2819–2823 (2006)

  20. Otto Bock MYOBOCK 13E200 =50 electrodes, http://www.ottobock.com/cps/rde/xchg/ob_us_en/hs.xsl/16573.html?id=16607

  21. Castellini, C., Van der Smagt, P.: Surface EMG in advanced hand prosthetics. Biol. Cybern. 100(1), 35–47 (2009)

    Article  Google Scholar 

  22. Sveistrup, H.: Motor rehabilitation using virtual reality. J. NeuroEng. Rehabil. 1(1), 1–10 (2004)

    Article  Google Scholar 

  23. Oskoei, M.A., Hu, H.: Myoelectric control systems—a survey. Biomed. Signal Process Control 2(4), 275–294 (2007)

    Article  Google Scholar 

  24. Yang, D., Zhao, J., Jiang, L., Liu H.: Dynamic hand motion recognition based on transient and steady-state EMG signals. Int. J. Hum. Robot. 9(1), 1250007.1-1250007.14 (2012)

    Article  Google Scholar 

  25. Englehart, K., Hudgins, B., Parker, P.A.: A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 48(3), 302–310 (2001)

    Article  Google Scholar 

  26. Au, A.T.C., Kirsch, R.F.: EMG-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals. IEEE Trans. Rehabil. Eng. 8(4), 471–480 (2000)

    Article  Google Scholar 

  27. Huang, Y., Englehart, K., Hudgins, B., et al.: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans. Biomed. Eng. 52, 1801–1811 (2005)

    Article  Google Scholar 

  28. Chan, A.D.C., Englehart, K.: Continuous myoelectric control for powered prostheses using hidden Markov models. IEEE Trans. Biomed. Eng. 52(1), 121–124 (2005)

    Article  Google Scholar 

  29. Shenoy, P., Miller, K. J., Crawford, B., et al.: Online electromyographic control of a robotic prosthesis. IEEE Trans. Biomed. Eng. 55(3), 1128–1135 (2008)

    Article  Google Scholar 

  30. Oskoei, M. A., Hu, H.: Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng. 55(8), 1956–1965 (2008)

    Article  Google Scholar 

  31. Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  32. Hsu, W., Lin, C. J.: A comparison of methods for multi-class support vector machines. IEEE T Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  33. Chang, C.-C., Lin, C-J.: LIBSVM: a library for support vector machines. ACM Trans Intell. Sys. Tech. 2(3), 27:1-27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Google Scholar 

  34. Fan, R. E., Chen, P. H., Lin, C. J.: Working set selection using the second order information for training SVM. J Mach. Learn. Res. 6(12), 1889–1918 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, T., Jiang, L., Liu, H.: A novel grasping force control strategy for multi-fingered prosthetic hand. J Cent. South Univ. Tech. 19(6), 1537–1542 (2012)

    Article  MathSciNet  Google Scholar 

  36. Zhang, T., Liu, H., Jiang, L., Fan, S. W., Yang, J.: Development of a flexible 3-D tactile sensor system for anthropomorphic artificial hand. IEEE Sens. J. 13(2), 510–518 (2013)

    Article  Google Scholar 

  37. Dalley, S. A., Varol, H. A., Goldfarb, M. A.: Method for the control of multigrasp myoelectric prosthetic hands. IEEE T. Neur. Sys. Reh. 20(1), 58–67 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Jiang, L., Huang, Q. et al. Experimental Study of an EMG-Controlled 5-DOF Anthropomorphic Prosthetic Hand for Motion Restoration. J Intell Robot Syst 76, 427–441 (2014). https://doi.org/10.1007/s10846-014-0037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0037-6

Keywords

Navigation