Skip to main content
Log in

UAVs Trajectory Planning by Distributed MPC under Radio Communication Path Loss Constraints

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a distributed linear MPC approach to solve the trajectory planning problem for rotary-wing UAVs is proposed, where the objective of the UAV system is to form a communication network to multiple targets with given radio communication capacities. The approach explicitly incorporates constraints on radio communication path losses, computed by using SPLAT! that is able to take into account terrain models and antenna locations. In order to enhance the online optimization, at each time sample the terrain below each UAV and the communication path losses are approximated with linear functions of the spatial coordinates. This leads to linear MPC sub-problems, which are solved by using convex quadratic programming. An algorithm for automatic initialization and optimal reconfiguration of the communication topology in case of failures or severe radio path loss due to e.g. channel fading, is proposed. The communication network that is provided by the UAVs is considered to be a payload communication capacity that is normally independent of the command and control datalink used to control the UAVs. The performance of the distributed linear MPC trajectory planning and the reconfiguration algorithm is studied on two simulation cases with four UAVs and two targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barraquand, J., Langlois, B., Latombe, J.C.: Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992). doi:10.1109/21.148426

    Article  MathSciNet  Google Scholar 

  2. Beard, R.W., McLain, T.W., Small Unmanned Aircraft: Theory and Practice. Princetion University Press (2012)

  3. Bellman, R.: Dynamic Programming. Princetion University Press (1957)

  4. Burdakov, B., Doherty, P., Holmberg, K., Olsson, P.M.: Optimal placement of UV-based communications relay nodes. J. Global Optim. 48, 511–531 (2010). doi:10.1007/s10898-010-9526-8

    Article  MATH  MathSciNet  Google Scholar 

  5. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dimarogonas, D.V., Johansson, K.H.: Decentralized connectivity maintenance in mobile networks with bounded inputs. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1507–1512. Pasadena. doi:10.1109/ROBOT.2008.4543415 (2008)

  7. Dixon, C., Frew, E.W.: Optimizing cascaded chains of unmanned aircraft acting as communication relays. IEEE J. Sel. Areas Commun. 30, 883–898 (2012). doi:10.1109/JSAC.2012.120605

    Article  Google Scholar 

  8. Dunbar, W., Murray, R.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006). doi:10.1016/j.automatica.2005.12.008

    Article  MATH  MathSciNet  Google Scholar 

  9. Dunlap, D.D., Caldwell, C.V., Collins Jr. E.G., Chuy, O.: Motion planning for mobile robots via sampling-based model predictive control. In: A. Topalov (ed.) Recent Advances in Mobile Robotics, pp. 211–232. InTech. doi:10.5772/17790 (2011)

  10. Ferguson, D., Likachev, M., Stentz, A.: A guide to heuristic-based path planning. In: Proceedings of the International Workshop on Planning under Uncertainty for Autonomous Systems, International Conference on Automated Planning and Scheduling (2005)

  11. Fink, J., Ribeiro, A., Kumar, V.: Motion planning for robust wireless networking. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2419–2426. doi:10.1109/ICRA.2012.6224725 (2012)

  12. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehicles. J. Guid. Control Dyn. 25(1), 116–129 (2002)

    Article  Google Scholar 

  13. Galperin, D.: On the optimality of A*. Artif. Intell. 1, 69–76 (1977)

    Article  Google Scholar 

  14. Gan, S., Sukkarieh, S.: Multi-UAV target search using explicit decentralized gradient-based negotiation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 751–756. Shanghai. doi:10.1109/ICRA.2011.5979704 (2011)

  15. Giselsson, P., Rantzer, A.: Distributed model predictive control with suboptimality and stability guarantees. In: Proceedings of the IEEE Conference on Decision and Control, pp. 7272–7277. Atlanta. doi:10.1109/CDC.2010.5717026 (2010)

  16. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst., 57 (2010). doi:10.1007/s10846-009-9383-1

  17. Goldberg, A.: A new max-flow algorithm. Tech. rep., MIT, Laboratory for Computer Science (1985)

  18. Grancharova, A., Grøtli, E.I., Johansen, T.A.: Distributed MPC-based path planning for UAVs under radio communication path loss constraints. In: Proceedings of the 1st IFAC Conference on Embedded Systems, Computational Intelligence and Telematics in Control, pp. 254–259. Wüerzburg. doi:10.3182/20120403-3-DE-3010.00031 (2012)

  19. Grancharova, A., Grøtli, E.I., Johansen, T.A.: Distributed path planning for a UAV communication chain by dual decomposition. In: Proceedings of the 2nd IFAC Workshop on Multivehicle Systems, pp. 43–48. Espoo. doi:10.3182/20121003-3-SF-4024.00001 (2012)

  20. Grøtli, E.I., Johansen, T.A.: Path- and data transmission planning for cooperating UAVs in delay tolerant network. In: Proceedings of the 3rd International Workshop on Wireless Networking and Control for Unmanned Autonomous Vehicles: Architectures, Protocols and Applications, pp. 1568–1573. doi:10.1109/GLOCOMW.2012.6477819 (2012)

  21. Grøtli, E.I., Johansen, T.A.: Path planning for UAVs under communication constraints using SPLAT! and MILP. J. Intell. Robot. Syst. 65, 265–282 (2012). doi:10.1007/s10846-011-9619-8

    Article  Google Scholar 

  22. Grøtli, E.I., Johansen, T.A.: Task assignment for cooperating UAVs under radio propagation path loss constraints. In: Proceedings of the American Control Conference, pp. 3278–3283 (2012)

  23. Han, Z., Swindlehurst, A., Liu, K.: Optimization of MANET connectivity via smart deployment/movement of unmanned air vehicles. IEEE Trans. Veh. Technol. 58, 3533–3546 (2009). doi:10.1109/TVT.2009.2015953

    Article  Google Scholar 

  24. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). doi:10.1109/TSSC.1968.300136

    Article  Google Scholar 

  25. Ho, D.T.: Grøtli, E.I., Sujit, P.B., Johansen, T.A., de Sousa, J.B.: Performance evaluation of cooperative relay and particle swarm optimization path planning for uav and wireless sensor network. In: Proceedings of the 4th International Workshop on Wireless Networking and Control for Unmanned Autonomous Vehicles: Architectures, Protocols and Applications. doi:10.1109/GLOCOMW.2013.6825191 (2013)

  26. Ho, D.T., Grøtli, E.I., Sujit, P.B., Sousa, J.B.: Cluster-based communication topology selection and UAV path planning in wireless sensor networks. In: Proceedings of the International Conference on Unmanned Aircraft Systems. Atlanta. doi:10.1109/ICUAS.2013.6564674 (2013)

  27. Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. IEEE Trans. Robot. 26(4), 635–646 (2010). doi:10.1109/TRO.2010.2049527

    Article  Google Scholar 

  28. Kan, Z., Dani, A.P., Shea, J.M., Dixon, W.E.: Ensuring network connectivity during formation control using a decentralized navigation function. In: Proceedings of the Military Communications Conference, pp. 531–536. San Jose. doi:10.1109/MILCOM.2010.5680411 (2010)

  29. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948. doi:10.1109/ICNN.1995.488968 (1995)

  30. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986). doi:10.1177/027836498600500106

    Article  MathSciNet  Google Scholar 

  31. Kim, H.s., Kim, Y.: Trajectory optimization for unmanned aerial vehicle formation reconfiguration. Eng. Optim., 1–20 (2013). doi:10.1080/0305215X.2012.748048

  32. Koenig, S., Likhachev, M.: Improved fast replanning for robot navigation in unknown terrain. In: Proceedings of the IEEE International Conference on Robotics and Automation. doi:10.1109/ROBOT.2002.1013481 (2002)

  33. Kuwata, Y., How, J.: Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Trans. Control Syst. Technol. 19, 423–431 (2011). doi:10.1109/TCST.2010.2045501

    Article  Google Scholar 

  34. Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., How, J.P.: Real-time motion planning with applications to autonomous urban driving. IEEE Trans. Control Syst. Technol. 17(5), 1105–1118 (2009). doi:10.1109/TCST.2008.2012116

    Article  Google Scholar 

  35. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

  36. LaValle, S.M., Kuffner, J.J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(378), 378–400 (2001). doi:10.1177/02783640122067453

    Article  Google Scholar 

  37. Le Ny, J., Ribeiro, A., Pappas, G.: Adaptive communication-constrained deployment of unmanned vehicle systems. IEEE J. Sel. Areas Commun. 30, 923–934 (2012). doi:10.1109/JSAC.2012.120608

    Article  Google Scholar 

  38. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime dynamic A*: An anytime, replanning algorithm. In: Proceedings of the 15th International Conference on Automated Planning and Scheduling (2005)

  39. Likhachev, M., Gordon, G., Thrun, S.: ARA*: Anytime A* with provable bound on sub-optimality. In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, pp. 767–774. MIT Press (2004)

  40. Longley, A., Rice, P.: Prediction of tropospheric radio transmission loss over irregular terrain: A computer method. Tech. rep., U. S. Goverment (1968)

  41. Maglicane, J.: SPLAT! an RF signal propagation, loss and terrain analysis tool. http://www.qsl.net/kd2bd/splat.html (2010)

  42. Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000). doi:10.1016/S0005-1098(99)00214-9

    Article  MATH  MathSciNet  Google Scholar 

  43. McMellen, J.: RF propagation modeling with SPLAT! for windows. http://blog.gearz.net/2007/09/rf-propagation-modeling-with-splat-for.html (2010)

  44. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press. ISBN: 9781400835355 (2010)

  45. Michael, N., Kumar, V.: Control of ensembles of aerial robots. Proc. IEEE 99, 1587–1602 (2011). doi:10.1109/JPROC.2011.2157275

    Article  Google Scholar 

  46. Milner, S.D., Llorca, J., Davis, C.C.: Autonomous reconfiguration and control in directional mobile ad hoc networks. IEEE Circ. Syst. Mag. 9, 10–26 (2009). doi:10.1109/MCAS.2008.931736

    Article  Google Scholar 

  47. Moses Sathyaraj, B., Jain, L., Finn, A., Drake, S.: Multiple UAVs path planning algorithms: A comparative study. Fuzzy Optim. Decis. Making 7, 257–267 (2008). doi:10.1007/s10700-008-9035-0

    Article  MATH  Google Scholar 

  48. Murray, R.M.: Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control 129, 571–583 (2007). doi:10.1115/1.2766721

    Article  Google Scholar 

  49. Navaravong, L., Shea, J.M., Pasiliao, E.L., Dixon, W.E.: Optimizing network topology to reduce aggregate traffic in a system of mobile robots under an energy constraint. In: Proceedings of IEEE International Conference on Communications, pp. 16–20. doi:10.1109/ICC.2012.6363692 (2012)

  50. Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27, 71–82 (2007). doi:10.1109/MCS.2007.338264

    Article  Google Scholar 

  51. Saska, M., Macas, M., Preucil, L., Lhotska, L.: Robot path planning using particle swarm optimization of Ferguson splines. In: Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation, pp. 833–839. doi:10.1109/ETFA.2006.355416 (2006)

  52. Shin, J., Kim, H.: Nonlinear model predictive formation flight. IEEE Trans. Syst. Man Cybern.–Part A: Syst. Humans 39, 1116–1125 (2009). doi:10.1109/TSMCA.2009.2021935

    Article  Google Scholar 

  53. Spanos, D.P., Murray, R.M.: Motion planning with wireless network constraints. In: Proceedings of the American Control Conference, pp. 87–92. doi:10.1109/ACC.2005.1469913 (2005)

  54. Stentz, A.: The focussed D* algorithm for real-time replanning. In: Proceedings of the International Joint Conference on Artificial Intelligence (1995)

  55. Tsourdos, A., White, B., Shanmugavel, M.: Cooperative Path Planning of Unmanned Aerial Vehicles. Wiley (2010)

  56. Zhang, H., Llorca, J., Davis, C.C., Milner, S.D.: Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans. Mobile Comput. 11, 1207–1222 (2012). doi:10.1109/TMC.2011.141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Grancharova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grancharova, A., Grøtli, E.I., Ho, DT. et al. UAVs Trajectory Planning by Distributed MPC under Radio Communication Path Loss Constraints. J Intell Robot Syst 79, 115–134 (2015). https://doi.org/10.1007/s10846-014-0090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0090-1

Keywords

Mathematics Subject Classifications (2010)

Navigation