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Abstract

This paper considers the controllability analysis andtfealerant control problem for a class of
hexacopters. It is shown that the considered hexacopterdsntrollable when one rotor fails, even
though the hexacopter is over-actuated and its contrtdithalbnatrix is row full rank. According to
this, a fault tolerant control strategy is proposed to aurdrdegraded system, where the yaw states
of the considered hexacopter are ignored. Theoreticalysisaindicates that the degraded system
is controllable if and only if the maximum lift of each rotos Dreater than a certain value. The
simulation and experiment results on a prototype hexacshtav the feasibility of our controllability

analysis and degraded control strategy.
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NOMENCLATURE

altitude of the multirotor helicopter, m

roll, pitch and yaw angles of the multirotor helicopterdra
vertical velocity of the multirotor helicopter, m/s

roll, pitch and yaw angular velocities of the multirotorlibepter, rad/s
total thrust of the multirotor helicopter, N

airframe roll, pitch and yaw torque of the multirotor helpter, Nm
mass of the multirotor helicopter, kg

acceleration of gravity, kg/s’

moment of inertia around the roll, pitch and yaw axes of the
multirotor helicopter frame, kgn?

lift of the :-th rotor, N

maximum lift of each rotor, N

efficiency parameter of thith rotor

distance from the center of the rotor to the center of mass

ratio between the reactive torque and the lift of the rotors

I. INTRODUCTION

Multirotor helicopters are attracting increasing attentin recent years because of their important

contribution and cost effective application in severakgasuch as surveillance, search and rescue

missions and so on. However, there exists a potential riskivib safety if the helicopters crash

especially in an urban area. Therefore, it is of great ingunt to consider the flight safety of

multirotor helicopters in the presence of rotor faults dlufas.

Over-actuated aircraft have the potential to improve ga#id reliability. Fault tolerant control

of over-actuated aircraft subject to actuator failures iscussed widely[ J1I[2[[3]. Most works on

fault tolerant control implicitly assume that the contrgsgems are still controllable in the event of

failures. However, few works consider the controllabilitfythe systems with faults. If the system is
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uncontrollable, any fault tolerant control strategy wil bnavailable. InJ4], Schneidet al. proposed
a useful method to study the controllability of multirotoyssems with rotor failures based on the
construction of the attainable control set. However, théy mbt give theoretical analysis of the
controllability of the multirotor systems. This is one oframotivations.

Sometimes, a hexacopter is uncontrollable if one rotos f&llwing to this, the hexacopter subject
to rotor failures is often controlled by leaving the yaw etatincontrolled, the feasibility of which
has been tested byl[4][5]. This is very useful in emergentyatibns. However, we find that not
all the uncontrollable hexacopters can be controlled bydégraded way mentioned in! [4][5]. If the
maximum lift of each rotor is lower than a certain value thba tlegraded system, where the yaw
states of the considered hexacopter are ignored, is stibntmollable. Our another motivation is to
specify this lower bound value.

In this paper, the controllability of a class of hexacoptaubject to one rotor failure is analyzed
based on the positive controllability theory inl [6], and thesults show that the hexacopter is
uncontrollable. In order to land the hexacopter safely, grBged Control Strategy (DCS) is proposed
for the degraded system. The lower bound of the maximum flitach rotor is specified, which can
help the designers in choosing the proper rotors for immgwhe fault-tolerant capability of the
hexacopter. The major contributions of this paper are: (ifyeoretical controllability analysis for a

class of hexacopters, and (ii) the specification of the lolernd of the maximum rotor lift.

Il. PROBLEM FORMULATION
A. Hexacopter Model
This paper considers a class of PNPNPN hexacopters showig.ih Fhe linear dynamical model

around hover conditions is given as follows [7][8]:

i = Az + B(F — G) (1)
~——

u
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Fig. 1. Kinematic scheme of a PNPNPN hexacopter, where Ptelenbat a rotor rotates clockwise and N denotes that a

rotor rotates anticlockwise

where
c=[ho¢0puvpgr] eR,F=[TLMN]"€R*G=[mag 000" eR?,
Osxs Iy 8x8 0 8x4 :
A= e R°*°, B = € R®*%, Jp = diag(—myq, Ju, Jy, J2)
-1
0 0 J;
and

u=F—-Gel cR. (2)

According to the geometry of the hexacopter shown in[Figh&, mapping from the rotor lift

fi,i=1,--- 6 to the system total thrust/torqué is [4][7]:
F=Hy . nf 3)

wheref = [f; --- fs]" € R® and the control effectiveness matk,, ... ,, € R**6 in parameterized
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form is } )
m 72 UE] 74 75 "6
0 —%mpd —Pmyd 0 Ppsd Yoed
Hpy, oo s = : (4)
md  Smpd  —gnzd  —md —insd  Ined
—mky  moky  —msky maky —nsky neky
The parameten; € [0,1],i=1,--- ,6 is used to account for rotor wear/failure. If thh rotor fails,

thenn; = 0. Since the rotors of the hexacopter can only provide upwéied Wwe let f; € [0, K] ,i =
1,---,6. As a result, we have

feF=1_,[0,K]. (5)

B. Control Constraint

In this section, we will specify the control constraidt Combining [2), [(B) and{5), we can get
the control constraint

U . =A{ulu=Hy ....f —G,fe€TF}. (6)

Next, we consider the control constraldtunder a control allocation. In practice, the virtual cohtro
F is often designed first. Then, the control allocation is ugedbtain f as
f=Py ..y F (7)
whereP,, ... ,, € R®* is the allocation matrix satisfying
Hy, ... Py s = 14 (8)
SinceF = u + G from (Z), we can get the control constraidtunder the control allocatio](7) as

L{f;h,,, e = {u|Py, ... ps (u+G) € F}. (9)

)

The pseudo-inverse matrix (PIM) methad [8][9] is often usedhooseP, ... ,, as follows

T T -1
Pm,---,n@, = H;[h,“-,na = Hm,---,na (Hm,---,naHnl,m,ns) : (10)
The relation betweety? . andd) . . is stated asSTheorem 1, which is consistent with the

results in [8] and[[10].
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a 0
Theorem 1. Uy .., C U, .

Tle M6 "

Proof. For anyu* € Uy, ... . , there exists &* € F such thatf* = P, .. ,, (u* + G). By (8), we

have H,, .. y,f* — G = Hy, ... p; Py, ... ;s (u* + G) — G = u*. This impliesu* € 4 . . namely
0

uglv“‘vnﬁ g um,"'ma' O

C. Objective

The first objective is to show that the systdm (1) will IosetmltabilityH when one rotor fails. That
is, the systemi{1) is uncontrollable subject to the contowistraint/ = u?hzo where, for simplicity,
the subscript); = 0 is used to denote that only theth rotor fails and the remaining rotors have
neither wear nor failures. The second objective is to sth@ycontrollability of the degraded system,
where the yaw states are removed frath (1), and specify therlbaund of the maximum lift of each
rotor.

Remark 1. Not all the hexacopters are configured as Fig.1. For exanapldass of PPNNPN
hexacopters are considered|in [4]. It is pointed out thatiotipe of hexacopters can be analyzed in
the same way as the popular PNPNPN hexacopter.

Remark 2. Classical controllability theories of linear systemseaftrequire the origin to be an
interior point of i/ so thatC (A, B) being row full rank is a necessary and sufficient conditioh [6
However, for the systeni (1) the control constrdint= ugizo does not have the origin as its interior
point when some rotors are damaged or fail. Consequefiflyi, B) being row full rank is not
sufficient to test the controllability of the systel (1).

1The system[{1) with constraint sét ¢ R* is called controllable if, for each pair of points € R® andz; € RS,

there exists a bounded admissible contio(t) € U/, defined on some finite interval < ¢ < t;, which steersr to ;.

Specifically, the solution td{1); (¢, u (-)), satisfies the boundary conditiong0,u (-)) = zo andz (t1,u (-)) = z1.
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[1l. CONTROLLABILITY OF THE HEXACOPTERSUBJECT TOONE ROTOR FAILURE
A. Preliminaries

In this section, we will study the controllability of the heopter subject to one rotor failure based
on the positive controllability theory proposed in [6]. Aping the positive controllability theorem
in [6] to the system[(1) directly, we have

Theorem 2. Consider the systerfil(1), suppose that thelsebntains a vector in the kernel &f
(i.e., there exists € U satisfying Bu = 0) and the seCH (L{)Q has nonempty interior ifR*. Then,
the following conditions are necessary and sufficient fer ¢ontrollability of [1):

(c1) RankC (A, B) =8, whereC (A,B) = [B AB --- A'B].
(c2) There is no non-zero real eigenvectoof A7 satisfyingv” Bu < 0 for all u € U.

For the considered linear hexacopter modél Theorem 2 is simplified as follows.

Coroallary 1. The system[{1) is controllable if and only if

min max v’ Bu > 0 (11)
veEY uel

whereV = {v|ATv =0, |jv|| = 1,v € R8}.

Proof: The proof is straightforward. For the systelm (1), it is easgheck that rank (A, B) = 8.
According toTheorem 2, then the systeni{1) is controllable if and only if there isman-zero real
eigenvectow of A7 satisfyingv” Bu < 0 for all u € U. Since all the eigenvalues of’ are zero, all
the real eigenvectors of” can be obtained by solving linear equatiot’Sy = 0. Then the systeni]1)
is controllable if and only if[(T1) is satisfied. The constitdjv|| = 1 is used to makd_(11) verifiable,

which does not change the sign of Bu. O

B. Controllability Analysis of the Hexacopter Subject to One Rotor Failure

For the controllability of the hexacopter subject to onerdailure, we have the following theorem:

2CH (U) is the convex hull of4. According to [T1], the convex hull o is the set of all convex combinations of points

in A. If A is convex, therCH (A) = A.
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Theorem 3. The system[{{1) constrained by = u?hzo,w € {1,2,3,4,5,6} is uncontrollable.
Proof: This proof is accomplished by counterexamples. For egch 0, we find a vector; € V
satisfying

max 0] Bu=0 (12)
u€lUy o

Then

min max v’ Bu <0.
veY ueU

Consequently, the systernl (1) constrainedlby- ugizo,w € {1,2,3,4,5,6} is uncontrollable ac-
cording to toCorollary 1. See Appendix A for detaild]

As analyzed above, the PNPNPN hexacopter subject to one faitare is uncontrollable. A
guestion follows consequentially: how a hexacopter cad Isafely after one rotor fails. In_[4][5],

the author suggested a degraded control way that was to fleawaw states uncontrolled. However,

neither a controllability analysis nor a concrete DCS @&xist

IV. DEGRADED CONTROL AND ANALYSIS FOR SAFE LANDING WITHOUT YAW

According to Section lll, the yaw states of the hexacoptey maleft uncontrolled for safe landing
when one rotor fails. In this section, a DCS for the case witk of;, i = 1,--- ,6 being zero is
approached, which does not require any change on the drigamaroller. Furthermore, it is shown
that the hexacopter subject to one rotor failure can lanchbyXCS if and only if the maximum lift

of each rotor is greater than a certain value. This lower Howatue will be specified in this section.

A. DCSfor Safe Landing Without Yaw Control

In practice, the virtual controF is often designed first. Then if no rotor failg, is obtained by
f=PF whereFF = [T L M N]T and P is expressed by (10). If one of, i = 1,--- ,6 is zero,
the DCS for the systeni](1) includes the following two steps:

Sep 1. Leave the yaw states uncontrolled. One simple way is tddetrs) = (¢, r.), where

(vs,75) are the sensed yaw states and, r.) the commanded yaw states.
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Sep 2: ReallocateF to the set of rotor liftsf by

[ =PF, (13)
_ _ _ _ -1
e = Ho o (oo o HY ) (14)
where F = [T L M]" and
m M2 73 o 15 16
H’Zu“'ﬂ?a = 0 —@ngd —gngd 0 §n5d @nﬁd : (15)
md  imd  —insd —mud —insd  Ined

However, there is no theoretical analysis of the DCS in thistiexy literatures according to our
knowledge. In the following section, the lower bound of theximum lift of each rotor is specified

through controllability analysis.

B. Controllability Analysis of the Hexacopter Removing the Yaw States

The degraded system that the yaw states are removed [flora ¢lyen as

i* = Az* + B(F - G) (16)
Hf_/

where

m*:[h¢9?)hpq]T€R6,F:[TLM]TER?’,C_?:[magOO]TeRg,

i O3xs I 6x6 7 0 6x3 7 :
A= e R B = e R**°, J; = diag(—mq, Jz, Jy)
7—1
0 0 Jf

and

i=F—-GelcCR>
Similar to the systeni{1), the control constraintis

U e =Aalu=Hy, ..,f—G,feF}. (17)

Z/_{a 57e = {ﬁ‘pnh“'vnﬁ (ﬁ + G) € ]:} : (18)
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Similar to Theorem 1, we havel(y. . Cud .

e N6

Similarly to Corollary 1, the following theorem is obtained:

Theorem 4. The system[(16) constrained byis controllable if and only if

min max ! Ba > 0 (29)
veV uel

whereV = {v|ATv =0, |jv|| = 1,v € R°}.
Proof: This proof is similar to the proof o€orollary 1. See Appendix B for details.]

Theorem 5. The system((16) constrained by= U/, _,,Vi € {1,2,3,4,5,6} is controllable if and
only if

5
K> — . 2
> 1gMag (20)

Furthermore, the systeri (16) constrainedZby- 2/77071:0,% € {1,2,3,4,5,6} is controllable if [20)
holds.
Proof: Underl{ = L?ZFO we first prove that the following two propositions hold (sepp&ndix

Q).

Proposition 1: there is av, € V satisfying

max 04 B <0 (22)
ueU?

if K < %mag.
Proposition 2: there is no such a, € V satisfying [21) if K > mayg.
With Proposition 1 andProposition 2, the system{16) constrained biy= 7;’32:0 is controllable if

and only if [20) holds according t®heorem 4. If (20) holds, then for each pair of pointg € R® and

) € RO there exists a* (t) € Uy, _, which steersrg to z;. Sinceld?, _, C Uy _,, a* (t) € U, _,,

0

namely the systeni(16) constrained &y=/,,_

is controllable. Similarly, we can conclude this
proof fortf = U, o, Vi € {1,3,4,5,6}. O

Remark 3. According to Theorem 5, the designers should choose proper rotors satisfiing

1—58mag so as to make sure that the hexacopter can adopt the DCS ptbjpothis paper.
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Fig. 2. A prototype hexacopter

V. SIMULATION AND EXPERIMENT

In order to show the feasibility of the proposed DCS, simatet and an experiment of a prototype
hexacopter (see Fid.2) are carried out. The physical paeamef the prototype hexacopter are shown
in Table[l. In the simulation, the hexacopter is controllgdRyoportional-Derivative (PD) controllers
and the proposed DCS for safe landing is applied. Aftee 0, the hexacopter keeps ité, ¢, 0) to
the desired targets by leaving the yaw states uncontrdietihe experiment, a real flight test for the
prototype hexacopter was carried out. During the real flight, > was set to zero. Then the DCS
for safe landing kept the hexacopter level and the hexacapds landed by the remote-controller

avoiding loss of control.

A. Smulation Results

Based on the parameters in Talle I, a digital simulation i$opmed. The hexacopter hovers at
he = 1 m and[¢. 6. 1.]7 = [005]" rad controlled by Proportional-Derivative (PD) contrefle

which are expressed by

L=20(¢— ¢c) +3p, M =20 (6 — 6,) + 3q,

N =20(¢ — ) + 3r,T =10 (h — h¢) + 6v, + mgg. (22)
If no rotor fails, f is obtained by

T T -1
f= th___’ne (th...mﬁHm,__mG) F (23)
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TABLE |

HEXACOPTER PARAMETERS

Parameter| Description Value | Units
m Mass 1.535 | kg

g Gravity 9.80 m/s>
d Rotor to mass center distan¢e0.275 | m

K Maximum lift of each rotor | 6.125 | N

J Moment of inertia 0.0411| kg.m?
Jy Moment of inertia 0.0478 | kg.m?
J. Moment of inertia 0.0599 | kg.m?
K, k/p 0.1

whereF = [T L M N]*. And if one ofn;, i € {1,2,3,4,5,6} is zero, f is obtained by

_ _ — -1
f=Hy o (Hy=oHy—) F (24)

whereF = [T L M]".

Fig[3 shows the simulation results when no rotor fails, wherp, 0, and+ are controlled to the
desired target with nice performance. At time instant 1s, 7 is set to0. Fig[4 shows the simulation
results whenj, = 0 and the DCS is not adopted. It is shown thats, §, and diverge from their
targets. With the DCSh, ¢, andé are controlled to the desired targets with nice performgsee
Fig[8) which avoids loss of control.

According to Theorem 5, not all the uncontrollable hexacopters can land in the athkept way

S
18

proposed in this paper. It should be pointed out thaKif< -%2m,g, then h, ¢, and 6 are not
controllable and the hexacopter will crash to the land if ooter fails. In the simulation, we change
the value ofK to %’mag and the simulation results @f, ¢, # are shown in Figlé where the DCS is
adopted. Obviously, the hexacopter is out of control.

Remark 4. In Fig[8, the yaw angle changes with a constant angularcitglat last. When the

hexacopter rotates fast, the damping momant = Kypr? can not be ignored, wher& yp is
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2 T T T T T T T T T
1 -
£ /
0 .
_1 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Roll
0.05 T T T T T T T T T
3 o
~0.05 ! ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10
Pitch
0.05 T T T T T T T T T
8 o
_005 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Yaw
5.6 T T T T T T T T T
5.4 B
o
I
5.2 : : B
5 I Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8 9 10
time/s

Fig. 3. No rotor fails andh, ¢, 0,1 are controlled to the desired target

the damping coefficient. In the simulation we chodégp = 0.2N-m/rad® to make the simulation
results be consistent with the experiment results. Pasxswet ¢ = 1,--- ,6, which in practice can
be obtained by fault diagnosis strategies| [12][13], areiaesl to be known. Since the effect of fault
diagnosis strategies are not in the scope of this paper, whieyot be discussed here and will be

invertigated in our future researches.

B. Experimental Results

In order to show the feasibility of the proposed DCS, a reghflitest of the prototype hexacopter
shown in Fig.:2 was carried out. During the flight, 6. ¥.]7 = [0 0 5]” rad andh was controlled by
a remote-controller. Part of the flight data is shown in[EiJ.e hexacopter was in a stabilize mode

(where ¢, 0,1 were controlled by Proportional-Integral-Derivative tmtlers andh was controlled
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_0.5 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Roll
1.5 T T T T T T T T T
1F i
el
o
0.5f b
0 ! ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10
Pitch
0.5 T T T T T T T T T
0 |
el
g
-0.5F B
_l I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

time/s

Fig. 4. The DCS is not adopted aftes = 0 andh, ¢, 0, ¢ diverge from their target

by a remote-controller) before time= 1s. At time instantt = 1s, 1 was set td), then the controller
kept ¢, 8 around zero by the DCS. And the hexacopter was landed sloyihd remote-controller
avoiding a flight crash.

Remark 5. According to Fid.V, the hexacopter rotates fast (neadyrad/s) after), = 0. But the
h can be controlled by the remote-controller to achieve a lsafding. The video of the experiment

is online [14].

VI. CONCLUSIONS

In this paper, the controllability and fault tolerant camtproblem of a class of hexacopters are
investigated. The following two conclusions are obtaingdalthough the considered hexacopter is

over-actuated and its controllability matrix is row fullnlg it is uncontrollable when one rotor fails,
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2 T T T T T T T T T
1,
F /
0 .
_1 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Roll
0.05 T T T T T T T T T
3 o
~0.05 ! ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10
Pitch
0.05 T T T T T T T T T
8 o
_005 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Yaw
10 T T T T T T T T T
8 s5F
0 I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
time/s

Fig. 5. The DCS is adopted aftgs = 0 and h, ¢, 6, are controlled to the desired target with nice performance

and ii) the uncontrollable hexacopter can land in a degragedby the proposed Degraded Control
Strategy (DCS) under the condition that the maximum lift atle rotor is greater thaqf‘g of the
hexacopter's gravity. The simulation and experiment tesah a prototype hexacopter show the
feasibility of the proposed DCS. The focus of our future wizrko extend the controllability theory

in this paper to analyze the controllability of general rmator helicopters.

VII. APPENDIX
A. Proof of Theorem 3

This proof is accomplished by counterexamples.
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h
2 T
1 i
e /_\
0 : i
_1 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Roll
0.06 T
0.04 i
=]
o
0.02 /\
0 — | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Pitch
0.05 T
8 o -
_005 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Yaw
10 T
8 s5F ]
0 I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
time/s

Fig. 6. K= %mag and the hexacopter is out of control even though the DCS igtado

(i) Caseno = 0. The control effectiveness matrii,,_, is expressed by

Hy,—g = . (25)
d 0 —id —d —ld 1id
—ky 0 —k, k, —k, Kk,

By solving H,,—o f = F based on the theory of linear algetira []Zﬁsjézo = {u\u =[T—-meg L M N]T}
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Real-time flight data
0.5 T T T

Roll/rad

0.6

0.4 B

0.2 B

Pitch/rad

Yaw/rad

time/s

Fig. 7. Real-time flight test for a prototype hexacopter

is given by the following inequalities

og—T+3dM+@N_a<K (26a)
Og—gL—ﬁM—%N+a<K (26b)
Og% +2dN—a<K (26¢)
Og%_ _%M_%Ngf( (26d)
0<a<K. (26€)

T
Letvgz[OOOOO —f‘] J—L anddy = we haved, € V and

- ||U2||’
ILJF M + 5 3 NV

[ 2]
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According to [264d),

ueU?®

n2=0

(i) Casen; = 0. Similar to the casey, = 0, we can find aj; € V satisfying

max 9! Bu=0,ic {1,3,4,5,6}.
ueU? _,

n5=

From (i) and (ii), we have

min max v’ Bu <0
veEY uel

and the systeni]1) constrained by= L{?]FO,W € {1,2,3,4,5,6} is uncontrollable according to

Corollary 1.

B. Proof of Theorem 4

We apply the positive controllability theorem inl [6] to thgssem [16) directly. Suppose that the
setl/ contains a vector in the kernel @ and the seC¥ (&) has nonempty interior ifR?, the
following conditions are necessary and sufficient for thataalability of (16):

(i) RankC (A,B) =6, whereC (A,B) = [B AB --- A°B].

(i) There is no non-zero real eigenvectonf AT satisfyingv” Ba < 0 for all @ € U.

For the system(16), it is easy to check that ra&hk4, B) = 6. Since all the eigenvalues of”
are zero, all the real eigenvectors 4f can be obtained by solving linear equatiotiSv = 0. Then

the system[(16) is controllable if and only [f {19) is true.

C. Proof of Theorem 5

1) Proof of Proposition 1: According to [I#) and[(15)P,,—0 = H, _, (FIm:OFIg;:O)_l. Then

1/7,‘712:0 = {ﬂ|ﬂ =[T—myg L M]T} is given by the following inequalities according {0 {18)
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e WAy K—ET,

180 = 0"V oq 18
—iTg—iL—iM <K — 5T,
18 18d 18d 18
e Iy<x-ip
6 3d 6
a3 2 e Ly
ol = 0a " 0 9
1 V3
—_T < —1 M<K——T 27
6" = 6d +6d 6 (27)

Denote E. = {c|c = (L,M)" L, M satisfy KZ{)} which is closed and convex. I’ > %K

co=10 O]T is not an interior point of£.. Then there is a non-zero vectgr = k. k:CQ]T satisfying

cFc—co) = ka L+ koM <0 (28)

for all ¢ = (L, M)" € E. according to[[1B]. Let; = [0 0 0 Ok.1J, keoJ,]” and o, = 12, we
have AT5, = 0 and

_ kL + koM
’L_)gB’l_L _ 1l + Ke2
[[va

According to [28),

max o4 B = 0.
ueUl, _

Thus, the system[_(16) is uncontrollable & > %K according toTheorem 4. Under hovering
conditions, we have’ = m,g. Thus,Proposition 1 is true.

2) Proof of Proposition 2: According to the proof oProposition 1, If T' < 1—581( thency = [0 O
is an interior point ofE,. According to [16], we cannot find a non-zero vectqr = [ke1 keo]”

satisfying c{c < 0 for all ¢ € E.. We will prove this by the proof of contradiction. Supposatth

there is a non-zero vectab = [0 0 0 0 k; kQ]T satisfying

max 04 B = 0
u€Uy)

n2=0

then we have

03 B = ky L/ Jy + kaM/J, < 0.
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Let ¢, = [ker keo]” = (k1 /T Ez/Jy]T. Then we get

cte=kiL)Jy +kaM/J, <0

and this contradicts with the fact that there is no non-zemtarc;, satisfyingel ¢ < 0 for all ¢ € E...

Thus, the systeni (16) is controllableTif < %K according torheorem 4. Under hovering conditions,

we havel = m,g. Thus,Proposition 2 holds.
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