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ABSTRACT 
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This thesis will show that the addition of Explanation-Based Fuzzy Neural Networks 

(EBFNN) to Q-learning improves the learning process of a self-learning visual servoing 

robot manipulator system. Two new self-learning visual servoing systems for robot 

manipulators are proposed based on the following methodologies: 

 Self-learning visual servoing of a robot manipulator using a Q-learning algorithm 

and fuzzy neural networks. 

 Self-learning visual servoing of a robot manipulator using EBFNN and a Q-

learning algorithm. 

Both learning methodologies do not require robot or camera models, or calibration. 

These systems apply Q-learning to find the optimal policy using reinforcement learning. 

This policy is used by the robot to reach a predetermined object that has been randomly 

placed in the environment.  In the first system the Q-learning algorithm is implemented 

using fuzzy neural networks to estimate the Q-evaluation function for each robot action. 

This system learns the optimal policy in order to select the best basic action that 

maximizes the cumulative reward received at each time step. Simulation results 

demonstrate the effectiveness of the system to learn the highly non-linear mapping 

between the continuous work-space and the optimal action policy.   



 

In the second system an analytical learning component is added to the induction 

learning. This system includes two main properties: on-line training and lifelong learning 

that are implemented by the Q-learning algorithm and the EBFNN respectively. It is 

demonstrated that the number of training samples, and therefore the training time for a 

specific robot positioning accuracy task, can be reduced using fuzzy explanation-based 

neural networks and the Q-learning algorithm. Background knowledge about the robot 

and its environment is transferred to the robot agent during the learning process using a 

set of neural networks which have been previously trained.  

The on-line learning and real-time performances of these two systems are compared 

and simulation results show the effectiveness of the EBFNN to improve the learning 

process and performance of the self-learning visual servoing system. The T-test and 

Wilcoxon-Mann-Whitney U test are used to justify the statistical significance of the 

results.   
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CHAPTER ONE  

 

INTRODUCTION 

1.1 Introduction 

This thesis investigates the improvement gained through the use of Explanation-Based 

Fuzzy Neural Networks (EBFNN) and Q-learning on the learning process and real-time 

performance of a self-learning visual servoing robot manipulator system. Two self-

learning visual servoing systems are introduced. These systems are based on the: 

1. Q-Learning Fuzzy Neural Networks (QLFNN). 

2. Q-Learning Explanation-Based Fuzzy Neural Networks (QLEBFNN). 

It will be demonstrated that the QLEBFNN, in comparison to the QLFNN, learns 

the visual servoing task in considerably fewer online training episodes. It also improves 

the real-time performance of the system by reducing the number of basic actions required 

to fulfill the visual servoing task.  

 Control of a robot using visual feedback is called visual servoing. In visual 

servoing, image features such as points, corners, lines and specific regions, can be used to 

adjust the manipulator gripper with a target object. A visual sensor is an element of a 

control system used to generate feedback about the state of the work-space. There have 

been more than three decades of research in visual servoing. These studies include visual 

servoing for a simple task, such as pick and place, to the sophisticated manipulation of 

objects. Visual servoing was first initiated by Hill and Park [1] in 1979. The term visual 

feedback was used instead of visual servoing prior to this introduction. A need for robotic 

systems with high degree of flexibility was the incentive for developing visual servoing 
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systems. Closed-loop control with visual feedback has been proposed to achieve higher 

levels of flexibility and accuracy in robotic systems.  

Robotic systems have a vital role in intelligent control and automation of a huge 

numbers of industrial processes. One of the main limitations in existing robotic systems is 

the lack of insight about the work environment. This constraint is a main factor that limits 

the complexity of the tasks a robot can carry out. Existing robots are capable of 

accomplishing their jobs only within a completely or partially structured work-space. The 

target, obstacles and environment conditions must be predetermined. When a robot does 

not have the ability to observe the work-space, then the domain and flexibility of its 

duties will be limited to a set of rigid pre-defined tasks. Machine vision is one of the most 

convenient solutions to perceiving the real world for robotic systems. A machine vision 

system can be applied to recognize and locate a fixed or moving object. This capability is 

used in visual servoing systems to position, track and grasp the target. Machine vision 

can also be used in different navigation systems such as vehicles, submarines and 

aircrafts. Vision-based automatic control systems have a great potential to grow, and are 

one of the most promising research areas in robotics research.  

Position-Based Visual Servoing (PBVS) and Image-Based Visual Servoing (IBVS) 

[2] are the two main categories of visual servoing systems. The image features are 

transformed to the Cartesian 3D space in PBVS while the IBVS does not perform this 

transformation. The image features error in IBVS is calculated in the image plane and 

transferred to the controller input.  This allows for higher robustness between the camera 

and its image error. The IBVS does not require camera calibration.  
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There are two major divisions for image features extraction techniques: Global 

Feature Extraction (GFE) [3-5], and Local Feature Extraction (LFE) [6-10]. The basic 

geometric characteristics of the image, such as points, corners, edges, lines, specific areas 

or marks, are used in the local features extraction method. This type of image features 

extraction is extensively applied in the visual servoing system but is restricted by several 

parameters, such as the environment conditions, shape and texture of the object. 

Researchers in visual servoing have paid more attention to global features extraction 

techniques in recent years. 

With respect to controller selection, various stable and robust controllers have been 

developed for visual servoing. A vast range of machine learning algorithms [11], such as 

Neural Networks (NN) with Back Propagation (BP), Radial Basis Functions (RBF), 

Fuzzy Neural Networks (FNN) and Genetic Algorithms (GAs), are used in the design of 

controllers for robot manipulators. 

A powerful methodology used to design and implement an autonomous robotic 

system is  the use of learning methods. In the area of self-learning robotics the number of 

training samples is often limited. Self-learning can also be used in Adaptive Visual 

Servoing. Explanation-Based Neural Network (EBNN) learning is proposed [12] as a 

reliable approach for generalization that needs a lower amount of training data. This 

feature relies on previously learned knowledge. Research on robot learning has primarily 

concentrated on learning particular tasks separately. A robot normally needs to do 

different duties during its lifetime. This provides the opportunity to transfer knowledge 

between different tasks. The robot can learn the invariants of the environment and of the 

different tasks. This learned knowledge is task independent and is named the Domain 
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Theory. The Domain Theory can be applied to bias generalization in order to reduce the 

requirement for real world experimentation. The EBNN can be used to establish this 

background knowledge as domain theory. 

The main limitations of traditional visual servoing systems are the need for inverse 

kinematics or Jacobian matrix calculation. For this purpose accurate mathematical 

models of the robot and camera are necessary. The main problem in existing learning-

based visual servoing systems is that they mostly use a supervised learning methodology. 

The training is performed in off-line mode and needs thousands of training samples for 

convergence. Two novel visual servoing systems are proposed to overcome these 

problems and limitations. Not only do the proposed systems not require robot and camera 

models or inverse kinematics and Jacobian calculations, but they also implement an 

unsupervised learning approach in an on-line mode. The experimental results 

demonstrate the achievement of higher adaptability and flexibility to learn and 

accomplish accurate positioning tasks. 

Two novel self-learning visual servoing systems using the Q-learning algorithm [13] 

are introduced in this research. In the first system Q-learning is implemented using fuzzy 

neural networks. EBFNN are employed for Q-learning implementation in the second 

system.  

These systems apply Q-learning to find the optimal policy through reinforcement 

learning. This policy is used by the robot to reach a predetermined object that has been 

randomly placed in the environment. The proposed visual servoing systems do not need 

robot or camera models, or require calibration because they do not need a robot and 

camera mathematical model for their controller design. Traditional visual servoing 
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systems always require the calculation of robot inverse kinematics and the Jacobian 

matrix. The proposed systems are not based on these calculations and therefore do not 

need a robot model. Camera calibration is the procedure of estimating the camera's 

intrinsic and extrinsic parameters relating to the world coordinate system. The proposed 

systems are not of the position-based visual serrvoing type which needs a camera model 

and calibration in its design.  

In the first system, the Q-learning algorithm is implemented using fuzzy neural 

networks to estimate the Q-evaluation function for each robot action. Each fuzzy neural 

network is trained using the input state and the Q-value for the basic action in on-line 

training episodes. The input state consists of the extracted image features. A camera 

mounted on the robot end-effector captures the target image at each time step and sends it 

to a feature extraction unit. The Harris Corner Detector algorithm is utilized for object 

recognition. This system learns the optimal policy which is necessary to select the best 

action that maximizes the cumulative reward received at each time step.  

Training is performed on-line in robotic self-learning systems. A smaller number of 

training samples and a shorter training time to achieve a specific positioning accuracy are 

desirable in these systems. The second proposed system includes two main properties: 

on-line self training and lifelong learning that are implemented by the Q-learning 

algorithm and explanation-based fuzzy neural networks respectively. It will be 

demonstrated that the numbers of training samples (learning episodes), and therefore the 

training time required to achieve a specific positioning accuracy, can be reduced using 

fuzzy explanation-based neural networks with Q-learning when compared to fuzzy neural 

networks and Q-learning. Background knowledge about the robot and its environment is 
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transferred to the robot during the learning process using a set of previously trained 

neural networks.  

The proposed self-learning visual servoing systems will implement new 

architectures and control strategies. The control strategy of robot joints is based on 

defined basic actions. The definition of these basic actions makes it possible to use 

EBFNNs to transfer knowledge for use in the visual servoing task. The focus of this work 

is on the necessary learning algorithms for this system. The learning algorithms include 

two main components: Q-learning and the EBFNN. The key point to understanding why 

EBFNNs are appropriate for visual servoing systems is associated with the image 

Jacobian that is an inherent concept in many visual servoing systems. EBFNNs 

incorporate the image Jacobian knowledge so that self-learning visual servoing 

manipulator systems based upon EBFNNs have an increased learning speed for new tasks 

using this inherent knowledge.  

The proposed visual servoing systems can be used when a robot manipulator is 

required to perform several tasks for different applications during its lifespan. For 

example, this system can be employed in a manufacturing plant for parts assembly, which 

consists of picking up and placement tasks for different components. These self-learning 

systems do not require programming for each new task and reduce engineering design 

time and expense. 

The proposed systems can also be applied in applications in which an accurate 

mathematical model for the robot and camera is not available. For example, in planetary 

exploration a rover-based manipulator works in an unknown environment that can affect 

the robot and camera parameters. These variations can cause a positioning error in 
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traditional visual servoing systems but the proposed system is able to learn by 

experimenting in the new environment and eliminating this positioning error.  

1.2 Research Contributions 

The major contributions of this research are as follows: 

 A new self-learning visual servoing system for robot manipulators based on the 

neural networks implementation of the Q-learning algorithm is proposed. The Q 

target or evaluation neural networks are used instead of the Q tables in the Q-

learning Reinforcement algorithm. These target neural networks are trained using 

on-line learning by random actions in learning episodes. When Q-learning is 

implemented using look-up tables there is no effort in its performance for 

generalization. This generalization means that the estimation of the Q value for 

unseen state-actions is derived from samples that have been seen. Using neural 

networks prevents rote learning and improves generalization of Q-learning [11]. 

In the traditional Q-learning algorithm based on look-up tables, a continuous 

input work-space is divided into a limited number of regions. All of the input 

state points in one region are presented by one value in one table entry cell that 

generates a quantization error. Using Back Propagation neural networks instead 

of Q tables also makes it possible to work on a continuous state space and 

prevents quantization errors due to the discretization of input states. To our 

knowledge, this is the first research to integrate Q-learning and artificial neural 

networks for the implementation of a highly non-linear robot manipulator visual 

servoing system. 
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 Another contribution of this research is the use of an Adaptive Neuro Fuzzy          

Interface System (ANFIS) for function approximation in conjunction with the          

Q-learning algorithm. Q-evaluation or target networks map the image features to 

the evaluation function Q for each basic action. This relation is highly non-linear. 

The ANFIS can achieve highly non-linear mappings with high performance. The 

ANFIS requires fewer parameters than other network architectures, such as      

multilayer feed forward neural networks. This can reduce the number of training 

iterations and the training time. Implementation of the Q-learning algorithm     

using ANFIS causes the parameters of the algorithm to converge quickly to    

values that can accurately estimate the next optimum action.  

 A self-learning visual servoing system based on the hybrid induction and 

analytical learning methodologies is proposed in this thesis. The concept of 

Explanation-Based Fuzzy Neural Network (EBFNN) is introduced, and its effects 

in reducing the on-line learning time and increasing the training accuracy are 

investigated. Trained action EBFNNs store the changes in extracted image 

features (states) with the changes in robot joints (actions). These changes are 

partial derivatives (slopes) of the image features with respect to the robot joints 

that build the image Jacobian. The image Jacobian contains the robot and camera 

model information. These trained EBFNNs are used to learn the new tasks during 

the on-line training. They transfer the image Jacobian knowledge stored in these 

networks to increase the speed of the learning process. It can be concluded that 

EBFNN's training constructs the image Jacobian and comprises the inherent 

knowledge of a visual servoing system. This knowledge is stored in EBFNNs and 
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can be used throughout the life of the robot. The results demonstrate that the use 

of EBL can improve the learning process and the real-time performance of the 

system. Two statistical tests: T-test and Wilcoxon-Mann-Whitney U test are 

applied to show the statistical significance of the results. 

1.3 Thesis Organization 

The thesis is organized as follows. Chapter Two introduces visual servoing approaches, 

vision-based control categorization, camera model in machine vision systems, camera 

configurations in visual servoing systems; image features extraction methods and robot 

manipulator kinematics and dynamics to provide some background information on these 

topics. The focus then moves onto the problem of definition and limitations for visual 

servoing systems in Chapter Three. A literature survey is prepared in Chapter Four. The 

proposed visual servoing systems are presented in Chapters Five and Six. In Chapter 

Seven a statistical analysis is presented. The conclusions of this thesis are then 

summarized in Chapter Eight. 
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CHAPTER TWO 

 

BACKGROUND  

This chapter will discuss the different visual servoing approaches, categories, methods of 

image acquisition, and image features extraction methods. Manipulator kinematics and 

dynamics are then presented as essential topics for such systems.  

2.1 Visual Servoing Approaches 

Visual servoing systems can be categorized according to the available information about 

the target object and the parameters of the camera. A calibrated method can be applied 

when the camera parameters are known. If there is a lack of information about the 

camera's parameters an un-calibrated approach must be used. 

 A model-based visual servoing can be employed if a 3D model of the target is on 

hand. A model-free system is used when there is no access to the 3D model.  

2.1.1 Model-based Visual Servoing  

The 3D model of the target is accurately defined in this case. The desired and current 

camera poses can be calculated by projecting the coordinates of a minimum of four 

available points on the object. These coordinates are normally determined with respect to 

the coordinate frame attached to the target.  

The manipulator’s end-effector can be moved to a reference grasping pose using this 

information. A prerequisite to using this system is an accurate knowledge of the camera's 

parameters. This type of system is known as calibrated visual servoing.  



 11 

2.1.2 Model-free Visual Servoing  

The robot can still perform the positioning task when a model of the target is not 

available. This can be done using training while the robot is servoed to the grasping 

position. In the first step the camera is moved to a desired target position and a reference 

image of the object is taken and stored. The camera's position with respect to the target is 

called the reference position. When this desired goal position has been learned and the 

camera or object moves to a new position an error control vector is calculated using the 

two images of the target. If the positioning error reaches zero it means the robot end-

effector is at the desired position with a pre-defined accuracy.  

2.2 Vision-based Control Categorization  

Vision-based robot control systems can be divided into four categories. This 

classification is based on the measurement of error for the control law calculation. These 

four groups are: position-based, image-based, hybrid, and motion-based visual servoing 

systems. Error computation in the position-based and the image-based visual servoing 

systems is performed in the 3D and 2D Cartesian spaces respectively. Hybrid or 2 ½ D 

visual servoing [14] is a system in which the error is partially measured in both the 3D 

Cartesian space and the 2D image plane. The last class is a motion-based visual servoing 

system [62]. In this type of system, the error is calculated by comparing a desired 

reference optical flow and the optical flow measured in the image.  

2.2.1 Position-based Visual Servoing (3D)  

Position-based or 3D visual servoing calculates the error in its control system by using 

the position of the camera as depicted in Figure 2.1 [58]. The model of the object is used 
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to calculate the position error. It depends on the features which are available in the target 

image. This type of visual servoing system has the advantage that the camera trajectory is 

directly controlled in Cartesian space.  

In this system there is no control to limit the movements of the image features inside 

the image boundaries used for the pose calculation. This problem is more probable if the 

robot or camera calibration is not accurate. In case of errors in the 3D model of the object 

or in camera calibration, the reference and the current camera poses cannot be estimated 

precisely and visual servoing fails.  

Figure 2.1: Model-based 3D visual servoing 

2.2.2 Image-based Visual Servoing (2D)  

The image-based or 2D visual servoing is a model-free control system which does not 

need a 3D model of the target.  The control law is based on the calculation of error in a 

2D image plane as illustrated in Figure 2.2 [58].    

Image-based visual servoing is robust against robot and camera calibration errors. 

The convergence of the system in an area around the reference position is guaranteed in 

theory. A general stability analysis against calibration errors is not possible due to the 

nonlinear and coupled system.  
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Figure 2.2: Image-based 2D visual servoing 

2.2.3 Hybrid Visual Servoing (2 ½ D)  

The main disadvantage of model-based visual servoing systems is that the target object 

may fall outside the camera's field of view since there is no control of the image. In this 

system a model of the target is needed to calculate the pose of the camera. Image-based 

visual servoing does not require the target model but a depth computation is unavoidable 

in its control law calculation. The major problem of the image-based visual servoing is 

that convergence can be only guaranteed in an area close to the goal position. This 

bottleneck can be avoided by using a hybrid visual servoing system [14]. The 2 ½ D 

visual servoing system does not require a 3D geometric of the target. This system can 

also guarantee the convergence of the control law in robot task space.   

In each iteration of the control law in a 2 ½ D visual servoing, the partial camera 

translation between the camera reference and the existing poses is computed [14]. A 

decoupled control law can be schemed using visual characteristics generated from the 

partial translations. This system is illustrated in Figure 2.3 [58]. 

The robustness of this system against calibration errors has also been investigated. 

This analysis demonstrates an improvement of the convergence and stability in eye-in-

hand hybrid visual serving when compared to position-based and image-based visual 

servoing systems [58]. 



 14 

Figure 2.3: Hybrid 2 ½ D visual servoing 

2.2.4 Motion-based Visual Servoing (d2D/dt)  

Figure 2.4 [58] shows a motion-based visual servoing system [62]. The system's design is 

established using the measurement of optical flow in the image. This measurement can be 

done without former knowledge of the object. It can concluded that motion-based visual 

servoing is a model-free approach. The reference and actual motion fields in the image 

are compared, and an error signal is applied to the controller in an eye-in-hand motion-

based visual servoing system. This system is able to perform other tasks such as docking, 

camera self-orientation and tracking. The main limitation of this system is the servoing 

rate, which enforces low robot speed. Improvements in motion estimation methods will 

overcome this drawback to build systems with a faster control loop.  

Recent research on visual servoing can be classified into two major categories: 

position-based visual servoing (PBVS) and image-based visual servoing (IBVS).  

Detailed research on PBVS and IBVS and their differences is performed in [15]. Image-

based visual servoing removes calibration and modeling errors, eliminates the need of 

image explanation and decreases the computational delay in the control loop. Researchers 

have used this system more frequently in recent years. 
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Figure 2.4: Motion-based d2D/dt visual servoing 

2.3 Camera Model in Machine Vision Systems  

The main task of a pinhole camera is perspective projection of a point in 3D coordinates 

to the image plane. It can be assumed that the camera image plane is like a matrix. The 

matrix is built of cells that are sensitive to the light. The size of the image plane matrix 

determines the resolution of the image. Each cell is named a pixel. The camera measures 

the intensity of the light for each pixel with coordinates (u, v) in an image plane. Figure 

2.5 [58] illustrates a 3D point with homogeneous coordinate’s ψ = (X, Y, Z, 1) that is 

projected to a point in an image plane with homogeneous coordinates P = (u, v, 1). 

                                                      ψΚP 0                                                             (2.1) 

The camera intrinsic matrix K is defined by the following Equation [58]:   
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In this matrix the pixels coordinates of the principle point is shown by u0 and v0. 

The camera's focal length is λ. The u and v axes scaling parameters are specified by ku 

and kv with the pixels/meters unit. The angle between the u and v axes is φ. It can be 
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assumed that the square pixels for the majority of commercial cameras are φ = π/2 and   

ku = kv.   

 

Figure 2.5: Camera model 

The relationship between the image plane and object coordinates for a simplified 

perspective projection vision system can be expressed as [2]: 
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In this equation all coordinates are in the frame of the camera's coordinates. The 

values of the intrinsic parameters are seldom precisely known. Accurate calibration of the 

camera parameters is a tedious task which needs a special calibration grid [16].  

The preference is to estimate the camera’s parameters without using a model of the 

seen object. It is feasible to apply a self-calibration algorithm [17] to find the intrinsic 

parameters when numerous images of any inflexible object are available. 
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2.4 Camera Configurations in Visual Servoing Systems  

The focus of this section is on camera configurations and image processing techniques in 

visual servoing systems. Visual servoing systems apply visual feedback in their control 

loop. The error measurement can be done in the camera image plane. This includes image 

differencing and optical flow methods. In another approach the camera parameters and 

some prior knowledge about the observed image features are used to estimate the pose of 

the object. Camera configuration, the number of cameras in the system, the required 

calibration accuracy and prior information about the work-space determine which method 

is more convenient. The following sections explain the visual servoing system’s 

categories related to the number of cameras and their configuration. 

2.4.1 Monocular Vision  

Monocular vision systems utilize one camera either in stand-alone or as eye-in-hand 

configuration. The model-based visual servoing approach is often selected to smooth the 

process of depth estimation. In the stand-alone configuration the camera is the global 

sensor. In this case the complete pose of the target can regularly be estimated using a 

geometric model of the object. Feature-based and window-based tracking methods are 

more popular than the eye-in-hand configuration. The advantage of the monocular vision 

system is that a single camera minimizes the required processing time to extract visual 

characteristics. The disadvantage of this system is the lack of depth information, which 

restricts the types of executable servoing functions. It also requires that the design of the 

control system is more sophisticated. The eye-in-hand is one of the most common 

configurations. In this configuration the camera is rigidly attached to the end-effector. 

Primary knowledge about the transformation between the camera and the end-effector 
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coordinate frames is usually required. The main function is to move the camera so that 

the image features match a set of desired reference image features. The system can 

monitor both the current and the desired image features in each iteration. A common task 

in stand-alone vision systems is to estimate the pose of the object relative to the camera 

or the robot frame. This type of system requires an accurate camera, as well as calibration 

between the camera and the manipulator. The stand-alone configuration provides a wider 

field of view when compared with eye-in-hand vision systems. 

2.4.2 Binocular Vision  

 Two cameras are used in a binocular vision system. This system is a stereo configuration 

of two cameras and is able to extract comprehensive 3D information about the scene. 

Calculation of disparity is a basic technique for depth estimation. The analogous features 

of two or more images are matched to estimate the disparity. This method applies to 

matching images of related areas or features such as edges and corners. Unlike monocular 

systems, this system does not need explicit models for depth. The disadvantage of this 

system is that its computational time will double for each iteration. Many visual servoing 

systems use this technique regardless of this drawback. Both stand-alone and eye-in-hand 

configurations can be used with this type of system. The eye-in-hand arrangement is 

rarely applied in visual servoing. This system may facilitate the depth estimation but the 

reconstruction accuracy can be reduced due to the restricted baseline. This technique is 

widely used to build a wireframe pattern of the object. The stand-alone configuration is 

generally used in binocular vision systems. The baseline can be extended enough to 

achieve a high accuracy in depth estimation. Another advantage of this system is a wide 

field of view. It is possible to observe the robot and the object at the same time.  A linear 
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model of camera can be selected if the camera views the work-space from a large 

distance. In 1989 Andersson [63] proposed one of the initial stereo visual servoing   

systems. The specific application that he focused on in his research was a ping-pong 

playing robot. The system was position-based and was precisely calibrated. He utilized 

image color segmentation and a dynamic model for detecting the ball and extracting its 

trajectory respectively.   

2.4.3 Redundant Camera Systems  

Redundant vision systems employ multiple cameras. They generate supplementary 

information when compared with the monocular and binocular vision systems [59]. 

Visual servoing systems that use more than two cameras in their structure are rare 

because the computational time to match multiple camera sights is too high. 

2.5 Image Feature Extraction Methods  

Image feature extraction techniques are divided into two main categories: local feature 

extraction and global feature extraction. Local feature extraction is typically based on the 

detection of basic geometric characteristics, such as points, corners, edges, lines, regions 

or artificial marks on the object [64]. This approach is limited to the shape, texture and 

occlusion of the object. Environmental conditions such as lighting and noise can affect 

the performance of this system. Researchers have gradually paid more attention to global 

feature extraction methods in recent years. Global feature extraction includes Fourier 

descriptors, geometric moment, stochastic transform, optic flow and Eigenspace 

algorithms [5], [64]. Visual servoing systems which apply global features extraction, do 

not require calibration or previous information about the robot and the camera. The 
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reports show that this type of system is less accurate in comparison with visual servoing 

systems based on local feature extraction. The application environment is one of the 

major factors considered when selecting between a local or global feature extraction 

approaches. 

2.5.1  Local Image Features Extraction 

Local geometric characteristics are typically selected as image features. These 

characteristics consist of the points, lines or other geometric features in an image. One of 

the most common image features that can be selected for image feature extraction in 

vision-based control systems are points. Points in the image correspond to corners, holes, 

region centers or particularly designed points on the object. A Harris Detector [18] is a 

powerful algorithm for extracting the desired points from an image. This algorithm is also 

used for extracting image features in the proposed systems. Other image features, such as 

straight lines, ellipses and contours can be extracted from the object image to use in the 

control system. Canny [19] has proposed a more common algorithm to detect contours in 

the image. An essential problem in machine vision is matching features. Model-based 

visual servoing requires a match between the current image features and the reference 

model features. Image features are matched between recent and reference views in 

model-free techniques. Matching images with different resolutions is also compulsory 

when the camera is zooming.    

2.5.2  Global Image Features Extraction  

Often local geometric characteristics of an image cannot be extracted consistently due to 

variations in factors such as illumination and surface reflectance. One solution can be the 

use of artificial marks, but this is not always practical in the real world. Several global 
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image features extraction methods are presented here, such as Fourier descriptors, 

eigenspace methods, geometric moments, optic flow, stochastic transform, and 

appearance from subspace methods. Eigenspace methods based on the Principle 

Component Analysis (PCA) [65] are used for image compression and have been applied 

more often in recent years than other technique for global image features extraction. 

2.6 Robot Manipulator Kinematics and Dynamics  

The dynamics of an n DOF robot manipulator is explained by the following equation that 

is a set of highly non-linear and strongly coupled second order differential equations [20]: 

                                              )(),()( θGθθVθθMτ                                              (2.4) 

Where )(θM is the n x n mass matrix of the manipulator, ),( θθV  is an n x 1 vector of 

centrifugal and coriolis terms and )(θG is an n x 1 vector of gravity term. These matrices 

are very complicated functions of θ andθ .  

       Vectorsθ ,θ , θ  are n x 1 for joint angular position, velocity and acceleration 

respectively, and τ  is n x 1 for a joint torque vector. Two essential problems in robot 

kinematics are forward and inverse kinematics. In forward kinematics, a set of robot joint 

angles is given and the problem is to find the corresponding location of the manipulator's 

end-effector. This desired location includes the end-effector's position and orientation. 

Forward kinematics can be interpreted as a one-to-one mapping from the robot's joint 

space to the Cartesian coordinate space. The forward kinematics problem can be solved 

by the 4x4 homogeneous transformation matrices. The Denavit and Hartenbergh model is 

often used for this purpose [20]. In an inverse kinematics problem, the location of the 
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end-effector in Cartesian space is known and the corresponding robot joint angles are 

calculated. Inverse kinematics has a multi-mapping feature and is a more difficult 

problem when compared with forward kinematics. Geometric, algebraic and numerical 

iterative methods are common approaches to solve an inverse kinematics problem. Some 

of these solutions are based on the inverse Jacobian matrix calculation, which 

demonstrates a mapping between the robot's joint and the task space.  

The numerical iteration method can be applied to invert the forward kinematic 

Jacobian matrix, but this algorithm is not guaranteed to generate all of the possible 

inverse kinematic answers. This method involves substantial computation. When the 

manipulator geometry is not accurately determined the traditional methods become 

difficult. Visual servoing of manipulators is one of these cases. 

2.7 Chapter Summary 

The most important stage in designing visual servoing systems is selecting the proper 

type, configuration and components. This chapter discussed three main approaches to  

visual servoing including position-based, image-based and hybrid systems. Different 

camera configurations were introduced and local and global image features extraction 

methods were explained. Finally manipulator kinematics and dynamics as well as 

forward and inverse kinematics calculation were described. It was shown that decisions 

about the required types, methods and components of the visual servoing system can be 

made by considering the specific application, work-space environment and desired 

specifications.  
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CHAPTER THREE 

 

VISUAL SERVOING PROBLEM DEFINITION   

This chapter presents the problem definition for different categories of visual servoing 

systems. Closed-loop position control for the end-effector of a robot manipulator can be 

established using machine vision systems. This mechanism is called visual servoing.  

Information from the visual sensors is used to control the pose of the end-effector with 

respect to the target or its features.  Two main camera configurations in these systems are 

generally eye-in-hand and stand-alone. The notations e , t , o  and c  will be used for 

coordinate frames attached to the robot end-effector, target, robot base and camera 

respectively. The relative pose of the camera with respect to the end-effector pose can be 

expressed by 
c

eT . This transformation includes the relative position and orientation of the 

camera and the end-effector coordinate frames. It can be specified by the corresponding 

rotation and translation matrices [2]. The relative pose of the target object with respect to 

the camera coordinates system is symbolized by
t

cT . In a stand-alone arrangement the 

camera is fixed in robot's work-space. The pose of the camera with regards to the 

coordinate system of the manipulator is
c

oT . The transformation 
t

cT  is the relative pose of 

the target with respect to the camera frame. The constructed target image in the camera is 

independent of the manipulator motion. The relationship between these poses for two 

camera configurations is shown in Figure 3.1 [2]. The calibration procedure must be 

executed before performing the visual servo task. This procedure estimates the camera's 

intrinsic parameters. These parameters consist of the principle point, the focal length and 

the pixel pitch. In a stand-alone configuration, a fixed camera's pose 
c

oT  with respect to 
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the world coordinate system must be setup as the camera's extrinsic parameters. The 

hand-eye calibration is typically performed for eye-in-hand configurations to find the 

camera's relative pose with respect to the end-effector 
c

eT . 

 

 

Figure 3.1: Relevant coordinate frames for the eye-in-hand and stand-alone 

configurations. 

 

There has been extensive research on the calibration problem in machine vision 

systems. Different solutions can be found for this issue in several studies such as [21-23], 

and [64]. Visual servoing systems may also be categorized by position-based and image-

based controls. In position-based visual servoing, the pose of the goal is estimated using a 

geometric model of the object and extracted image features as illustrated in Figure 3.1. 

Closed-loop control systems can reduce the error in pose space. The control unit executes 

the Cartesian control law and includes the joint controller and power amplifiers. In 

image-based servoing, control values are directly computed on the basis of image 

features. The control unit includes the feature space control law, joint controllers, and 

power amplifiers. The following sections will discuss these two main categories of visual 
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servoing systems in detail to obtain a better understanding of the problems, limitations, 

and potential improvement points in visual servoing systems.  

3.1 Visual Servoing Problem Definition in Position-based Control Systems  

The notion of a positioning task in position-based visual servoing can be formalized as 

follows [2]: 

     Definition: A positioning task is defined by mapping mRE:Ψ   where Ψ is the task 

space of the robot manipulator. It consists of the positions and orientations set that the 

robot end-effector can reach. m  is the manipulator's degree of freedom. The task space is 

the configuration space of the robot end-effector. When the tool is a single inflexible 

body that moves in a three dimensional work-space, it can be assumed that 

333 SORSE   and m = 6. 3R  is translational space, and 3SO  is the rotational 

space. This mapping is termed as the kinematic error function. The end-effector pose is 

expressed by
e

oT . When 0)(0 eTE , a positioning task is accomplished. A regulator in the 

control system can be established when an appropriate kinematics error function has been 

formulated and its parameters are extracted from visual information. This regulator is 

able to decrease the estimated rate of the kinematic error function to zero. This regulator 

also generates the desired end-effector velocities screw 6Ruc   
at every iteration applied 

to the control system. In the first step, the position-based systems are considered. The 

desired task is to bring a point with coordinates P
e  on the end-effector to a fixed 

stationing location S . This point is observable in the work-space as is shown in Figure 

3.1(b). This task is recognized as point to point positioning. The kinematic error function 
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calculation in the robot base coordinate can be formulated for the fixed camera 

configuration as [2]: 

   Epp(
oT
e
;oS,eP) = oT

e
(eP) - oS                                      (3.1) 

Control of oT
e

is desired. Other terms after the semicolon are parameters of the 

positioning task. The error function
ppE determines the three degrees of freedom 

kinematic restriction on the end-effector position. When the workplace is limited to  

3R , the positioning task can be assumed to be a rigid link.  This entirely constrains 

the pose of the end-effector with respect to the target. The camera is assumed to be 

calibrated to the manipulator base frame. In this case Ŝ
c

 is an estimation of the stationing 

point coordinates relative to the camera's frame. An estimation of the stationing point to 

the robot base frame will be )ˆ(ˆˆ SS
c

c

oo T , where c

oT̂  is the estimation of the camera pose 

in the manipulator base coordinates from an off-line calibration. The desired end-effector 

translational velocity in 3R  is the control input 3cu
 
that is needed to compute in 

control law. Equation (3.1) is linear with respect to the
e

oT . When there is no outside 

disturbance the proportional control law can be expressed as: 

                                ˆˆˆ= )),ˆ(ˆ;ˆ(  c

c

o

e

o

ppc3 ))(T) -(T -k( TTk c 

c

oe

e

oe
SPPSEu                       (3.2)  

This control law brings the system to an equilibrium state. The value of the error 

function at that point will be zero. The right hand side of Equation (3.2) consists of the 

estimated values e

oT̂ , c

oT̂ or Ŝ
c

. These are the manipulator kinematics, the camera 

calibration with respect to the robot base, and the target visual reconstruction 
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respectively. It can be concluded that an error in each of these components can create a 

positioning error of the end-effector. The translation and rotation transformation between 

the target and the end-effector for this case will be based on the following calculation of 

the homogeneous transformation matrices: 

                                  )T)(T )(T) = (T)(T)(T = (T c

c

o
e

oc

c

o

o

ee

SSS

1                                 (3.3) 

The focus is on the eye-in-hand visual servoing systems. The camera is installed on 

the manipulator and is calibrated relative to its end-effector as illustrated in Figure 3.1(a). 

Equation (3.1) can be rewritten with respect to the end-effector coordinates system: 

                                           ))(T( ) =;;T( o

o

ee eo

e

o

pp

e
SPPSE                                         (3.4) 

The related proportional control law will be computed as: 

                                                ))(T) k((= c 

c

ee

c

e
SPu ˆˆ

3                                               (3.5) 

       The  Te

o ˆ element is eliminated in the most recent equation. Thus Equation (3.5) 

demonstrates that the positioning accuracy is independent of the robot kinematics 

accuracy. The translation and rotation transformation between the target and the end-

effector for this case will be: 

                                                          )T)(T = (T c

c

ee

SS
                                                 (3.6) 

The visual servoing task in position-based control systems can be described as the 

Cartesian pose. This is the main benefit of these systems. The feedback in position-based 

systems is calculated using estimated values that are functions of the calibration 

parameters. This is the major disadvantage of position-based control that makes these 

systems very sensitive to calibration error in some situations. 
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3.2 Visual Servoing Problem Definition in Image-based Control Systems  

The positioning error in the image-based visual servoing is described as the image feature 

parameters. The following definition is referred to this case.  

Definition: An image-based visual servoing task is expressed using an image error 

function lRE:F  , where kl  . F is the image feature space and the dimension of the 

image feature space is symbolized by k .  

Image-based visual servoing systems may employ either a stand-alone or an eye-in-

hand configuration. End-effector movement generates variations in the image observed 

by the camera in both cases. A proper error function, E , must be defined such that when 

the goal is reached, 0E . The vector df  expresses the desired image features. These are 

image features that indicate when the end-effector has reached the goal position. The 

error E  is a function of both the end-effector and the object poses when the task is 

determined relative to the moving target. The robot control input is normally defined 

either in task space coordinates or in joint coordinates even though the error E  is stated 

on the image features space. It is essential to relate the variations in the image features to 

the changes in the position of the end-effector. The image Jacobian includes these 

correlations. If r  and r  represent the coordinates and the velocity screw of the end-

effector in the task space  respectively, then: 
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f  and f  are vectors of the image features and the image features rate of change 

respectively. vJ  is the image Jacobian matrix that represents a linear transformation from 

the tangent space of   at coordinates r  to the tangent space of F  at image features f . It 

can be written as: 

                                                                rrJf  )(v                                                      (3.8) 

where mk

v R J  and: 
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The dimension of the task space   is m. The number of columns in the image 

Jacobian matrix is determined by the robot's task. Weiss et al. [24] initially presented the 

concept of the image Jacobian as the Feature Sensitivity Matrix. The image Jacobian is 

also referred to as the B Matrix and the Interaction Matrix. The above equation illustrates 

how image features change with respect to variations in the end-effector pose. There is 

interest in determining the manipulator velocity r  required to achieve some desired value 

of f  in visual servoing. This requires solving the system given by Equation (3.8). 

      The control law in visual servoing applications normally computes the velocity screw 

of the end-effector where the image features rate of change f  is given as input. The 

following three cases can be assumed: k < m k = m  , and k > m . If k = m , the vJ  

matrix is nonsingular and the inverse Jacobian 
1

vJ  can be calculated. In this case it can 
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be concluded that fJr  1
 v . When mk  , the inverse Jacobian 

1

vJ  does not exist. If it 

is assumed that the Jacobian matrix is full rank or: (k,m) ) = rank( v minJ , then a least 

squares solution can be calculated by: 

                                                  bJJIfJr )( vvv


                                           (3.10) 

where b is an arbitrary vector of the proper dimension and 


vJ  is a suitable pseudo-

inverse for the Jacobian matrix vJ . This solution provides a value for the velocity screw r  

that minimizes the norm rJf 
v . When k > m  the number of image feature parameters 

is higher than the task space degrees of freedom. The coordinates  1 km+ , f, f  can be 

represented as smooth functions of  1 m, f, f   if, according to the implicit function 

theorem, in some neighborhood of coordinates r, km   and ) = mrank( vJ  that means 

the Jacobian matrix vJ  is full rank. The remaining k-m visual features are redundant and 

lead to a set of inconsistent equations. The k visual features will be acquired from a 

machine vision system and are probably noisy. The suitable pseudo-inverse is given by: 

                                                        
T

vvvv
T JJJJ

1)( 
                                              (3.11)  

In this case: 0)( 


vv JJI , m=  )rank( vJ  and the rank of the null space of vJ  is 0. The 

solution can be rewritten more briefly as:           

                                                                 fJr  
 v                                                      (3.12) 

The visual servoing system is under-constrained if k < m . It indicates that the 

sufficient image features are not observed to uniquely estimate the target motion r  and 
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that some specific elements of the target motion cannot be observed. The suitable pseudo-

inverse of the Jacobian matrix can be expressed by: 

                                                        
1)( 


T

vvvv
T JJJJ                                             (3.13) 

The following example can be assumed for the image Jacobian. The camera system 

is in stand-alone configuration. The end-effector angular and translational velocities are 

 zyxe

c ω,ωω ,Ω  and  zyxe

c V,VVV ,  respectively, and they are both relative to the 

camera frame. Suppose that  Tc x,y,zP  is a point on the end-effector. The camera 

image features vector is denoted by T f = [u,v] .The velocity of a point in the image plane 

can be expressed based on the velocity with respect to the camera by the following image 

Jacobian equation and using Equation (3.8): 
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λ is the focal length of the camera. 

This result can be extended to the general case. The Jacobian matrix can be stacked 

for each pair of image point coordinates using 
2

k  image points. The Jacobian matrix in 

the Equation (3.14) is a function of z.  This is the distance from the camera to the target 

point. In a stand-alone configuration when the target is the end-effector this distance can 

be calculated using the camera calibration data and the manipulator forward kinematics. 

The accuracy of the image-based visual servoing is independent of the calibration. These 
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systems also have a computational advantage. One disadvantage of the image-based 

technique is the existence of singularities in the feature mapping which cause unstable 

points in the inverse Jacobian control law. These instabilities are usually less dominant in 

position-based systems. Another limitation in the Image-Based Visual Servoing 

algorithm is the need to compute the image Jacobian on-line because it fundamentally 

depends on the distance from the camera to the object. This distance is especially difficult 

to compute in a monocular system. Many visual servoing applications apply a constant 

image Jacobian. This method is computationally efficient but valid only over a small 

neighborhood of the goal in the robot work-space. 

3.3 Limitations and Problems in Visual Servoing Systems Implementation  

The limitations and problems in implementing visual servoing systems is investigated in 

this section. There are several restrictions in visual servoing systems. Examples of these 

limitations include image processing algorithms with high computational times, the 

existence of non-linearity in camera systems, the size of the training samples dataset, and 

inaccurate models and sensor information. These bottlenecks can be classified to the 

following categories: 

 Accuracy in Positioning (Grasping): A positioning error of the end-effector is 

always a function of the estimated quantities e

oT̂ , c

oT̂ and Ŝ
c

 that are manipulator 

kinematics, camera calibration with respect to the robot base frame, and target 

image reconstruction, respectively. Errors in these estimated quantities can 

generate a positioning error of the end-effector. 



 33 

 On-line Adaption for Real-time Applications: A set of adaptive control schemes 

can be defined to compensate the effects of the uncertainty and errors in existing 

visual servoing systems. These adaptive controllers are required to overcome 

uncertainties in the robot dynamics and errors in the camera calibration 

parameters. Design of the adaptive controllers is a challenging task because the 

unknown parameters related to the machine vision system generate nonlinearly 

that can affect on the overall system dynamics. 

 Work-space Area: The image Jacobian is a function of the distance from the 

camera to the object. This distance is especially difficult to estimate in a 

monocular system. Many visual servoing systems employ a constant image 

Jacobian that is computationally efficient but is accurate only over a small 

neighborhood of the target in the robot work-space.  There are other solutions 

such as adaptive depth estimation and partial pose estimation. These methods 

introduce extra computations and extensively increase the complexity of the 

control system design.   

 Robustness: Variations in camera position and adjustments, environment 

conditions such as lighting and illumination, object color or soiled target and 

background can have an effect on visual servoing performance. It is desirable to 

design a visual servo control system to be robust against such variations. 

 Structured Work-space: The robots work in a structured work-space and execute a 

set of repetitive actions in manufacturing applications. The system's performance 

and stability cannot be guaranteed when the work-space is not well structured. 

Visual servoing systems are the appropriate solution to overcome this problem.  A 
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robot using vision-based control is able to work in an unstructured environment. 

Most research on visual servoing of robot manipulators has been focused on free 

motion control in an un-structured work-space and therefore the applications are 

limited. There might be static or moving obstacles in an unstructured work-space, 

hence planning obstacle avoidance or a collision free path is an essential need. 

These systems can be implemented by using visual feedback in control criteria. 

 Processing Speed: Visual servoing is a closed-loop discrete-time system. The 

frame rate of the camera can be a constraint on the sampling rate of the system.  

Computational capacity can also limit the processing speed of the system. The 

time delay in the closed-loop control system can be  due to the following factors:                                

- Camera charge integration time, 

            - Serial pixel transfer from the camera to the image processing unit, and 

- Computational time for image features extraction. 

It is possible that visual servoing system utilizes a moderately low bandwidth                  

communications connection between the machine vision system and the robot 

controller, which enters more delay. A number of robot controllers work with a 

sample interval that is not compatible with the sample rate of the machine vision 

system. This can also introduce further delay [25]. It is possible for a closed-loop 

control system with delay to become unstable when its loop gain is increased. 

Many visual servoing systems are adjusted empirically. In this method the loop 

gain is increased until the response time of the system becomes intolerable. 
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 Training Restrictions in Learning-Based Visual Servoing Systems: Visual 

servoing systems based on robot learning techniques need training samples. The 

available number of training samples needed to achieve the desired system 

performance is a major bottleneck for these types of systems. Learning in the 

minimum amount of time, and therefore the minimum amount of initial 

knowledge or training samples, especially for self-learning robotics systems is 

desirable. When the robot's duties are more complex and there is less knowledge 

about the problem then more training data is required for successful 

generalization and completion of the task. Chapters 5 and 6 propose novel visual 

servoing systems with a higher degree of accuracy, flexibility and adaptability in 

comparison with traditional and existing systems. The proposed systems are 

unsupervised learning-based systems in which learning is performed in on-line 

mode without human intervention and with a reduced number of training 

episodes. 

3.4 Chapter Summary 

In this chapter the visual servoing problem definition for robot manipulators is presented. 

The control criteria for two position-based and image-based system types are explained 

and the effect of robot kinematics, object image reconstruction and camera calibration 

errors on the positioning accuracy for each approach is described. Finally the problems 

and limitations in existing systems are investigated. 
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CHAPTER FOUR 

 

LITERATURE SURVEY IN VISUAL SERVOING  

4.1 Research in Visual Servoing  

A literature survey of visual servoing systems is presented in this chapter. Visual 

servoing systems with the following features are desirable in this research: 

 The main task is accurate positioning. 

 The machine vision system configuration is eye-in-hand. 

 The system is image-based visual servoing. 

 Local feature extraction methods are used by the image processing unit. 

 Self-learning based on fuzzy neural networks is used. 

 The research focuses on improving the training process in the learning system. 

The main task in visual servoing systems is to achieve accurate positioning. Errors 

in the manipulator model and kinematics, camera model and calibration, and target image 

reconstruction can create an end-effector positioning error. This affects the performance 

of the control system. The camera-in-hand configuration is preferable because it 

eliminates the effect of kinematics on positioning accuracy. Camera-in-hand is the most 

common configuration found in research from early work such as [26-27], to more recent 

research [28]. Visual servoing accuracy can be independent of camera calibration through 

the use of image-based methods. Research is referred to that employs image-based 

approaches for this purpose, such as [4], [5], [10], [29], and [30]. Another important issue 

involves the manipulator work-space region. Expanding the working area and increasing 
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the accuracy of the manipulator are goals that interact and can interfere with each other. 

There are researchers [31-32] that use both eye-in-hand and eye-to-hand cameras as 

complementary parts in order to gain the benefits from both types of systems, and to 

reach a larger work-space with a higher positioning accuracy. The eye-in-hand 

configuration presents a partial but accurate sight of the scene, while the stand-alone 

vision system is less precise but provides a global view of the work-space.  

There are other parameters that affect the positioning accuracy of a visual servoing 

system, such as image features extraction techniques, mapping algorithms, and the 

manipulator controller. The positioning accuracy depends on all of these variable 

quantities, and upon other design and implementation parameters. Most successful 

applications in robotics utilize neural networks to implement some kind of signal 

transformation that may not be easily computed by other means. This can be due to a lack 

of knowledge about the underlying process or because the conventional approach would 

be too complicated and computationally expensive. Neural networks have been applied in 

the following problems in the field of robotics [33]: to solve the inverse kinematic 

problem, to map the non-linear relationships in dynamics as an inverse dynamics 

controller, to solve trajectory planning problems, to map sensory information for control 

and in task planning and intelligent control. 

Research that has used neural networks to establish a mapping between points in the 

real world and the corresponding points in the image plane is presented in [8]. The 

industrial application of this work is automatic welding and incising using a robot 

manipulator. The robot works in a structured environment. The machine vision system 

consists of two CCD cameras looking at a work table. The goal of this application is to 
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control the motion of a tool mounted on the end-effector along a curve as precisely as 

possible. A feed forward neural network with three layers is utilized to approximate the 

relationships between the image coordinates and the world coordinates. This method is 

employed instead of using an image Jacobian calculation. Image and real world 

coordinates are used to train the neural network. The curve tracking system captures an 

image and performs image preprocessing on it. In the next step the curve is thinned and 

its position on the image is stored.  A trained neural network estimates the position of the 

curve in the world frame using the input image. This system can find a curve with a 

different form in the camera's field of view. A Motoman UP6 robot with 6 rotational 

joints is used for this research. The image coordinates of the left and right cameras are 

 T,vu 11
and  T,vu 22

 respectively for an object point in the world coordinate system with 

 Tωωω zyx ,,  coordinates. Image coordinates vector    TT
,x,x,xx,v,u,vu 43212211 x of 

two cameras are applied to the neural network as inputs. The output quantities are 

arranged in the    TT
,y,yy,z,yxy 321   vector. 

 + e(t))(
 - e(t))(

f(t) = 
1

1
 is the 

activation function of the neural network hidden layer. Five hidden units are used in the 

hidden layer. The network architecture is Back Propagation and performs the Levenberg-

Marquardt algorithm [60] for training. The curve is drawn on a plane with a measured 

size of about 220mm x 150mm. Training and testing samples consist of eighty-eight 

groups of points. Eighty groups are dedicated to train the neural network. The remaining 

eight groups are used for testing. The mean square error results are presented in Table 

4.1, where 
2

)( 22 yx
RMS


 . In this research the RMS unit is in millimeters. The 

root mean-square error of each experimental point is less than 1mm. This approach does 
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not need accurate models and former knowledge of the camera’s parameters. This 

method has an appropriate level of accuracy and flexibility because the neural network 

can operate with different nonlinear and distortions features. 

Table 4.1: The mean square error result 

Targets(mm):xw Targets(mm):yw Outputs(mm):xw Outputs(mm):yw RMS 

 63.6 0.0 63.9 -0.2 0.25 

 
127.2 21.1 127.2 20.9 0.14 

 
0.0 42.2 0.2 42.3 0.16 

 
190.8 42.2 190.9 42.7 0.36 

 
84.8 63.3 84.8 63.2 0.07 

 
148.4 84.4 148.5 84.4 0.07 

 
42.4 105.5 42.4 106.4 0.64 

 
106.0 126.6 105.9 125.8 0.57 

 
 

In another work [34], a visual positioning control system with an eye-in-hand 

configuration is proposed. In this work a feed forward neural network is used instead of a 

proportional controller scheme for a robot positioning task. The visual data input is 

transferred to the world actuator domain.  Simulation results in Figure 4.1 demonstrate 

that this technique can rapidly decrease the positioning error to zero and retains a proper 

dynamic response in comparison with the proportional controller.  

The experimental results are promising but could be improved in the following 

points: a) feed-forward networks have problems learning high dimensional non-linear 

mapping, b) input space dimension can be decreased to make the problem simpler, and c) 

development of an on-line learning network.  



 40 

 

Figure 4.1: Visual positioning features error for neural network and proportional 

controller methods [34]. 

On-line adaptive visual servoing systems can respond to variations in parameters to 

modify their performance in real-time applications. These variations are caused by the 

manipulator model, vision system, and work-space environment parameters. 

Another researcher employs a neural controller using the Back Propagation 

Learning algorithm [10]. This system utilizes vision data feedback, and the neural 

network maps information directly from an eye-in-hand camera to the arm control 

commands. This neural network controller is designed to work with an industrial robot 

arm. The system uses an on-line learning methodology which does not need an accurate 

model of the system. A series of target points that are uniformly distributed over the robot 

work-space are used to train the neural network. A set of experiments was implemented. 

Some system parameters were intentionally changed after training the neural network. 

The camera was turned by 0.1π in the first step and 0.5π in the second trial after 
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stabilizing the performance of the neural network controller. The results are depicted in 

Figures 4.2 (a) and (b). 

 

Figure 4.2: Relearning of the system after turning the camera (a) 0.1π, (b) 0.5π [10]. 

The system response convergence is achieved between 1000 and 3000 points when 

the camera angle deviation is small. The neural network requires more retraining in the 

case of larger changes in camera angle. These results demonstrate that the system is 

capable of learning the new mapping even with large deviations in camera angle. This 

paper shows that the on-line learning of a neural network can establish an adaptive 

controller for a robot manipulator. The researchers concluded that the system has two 

problems that prevent its industrial application. The first drawback is that the neural 

network controller needs a large number of learning samples which will require a long 
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on-line learning time. The neural network controller has the adaptability necessary to 

learn moderately small changes in the system parameters in on-line mode. There are 

several algorithms that can be employed to accelerate the Back Propagation Learning and 

can be implemented in order to achieve a faster convergence. A second point of concern 

is the inaccuracy of the system. This inaccuracy seems to be due to the use of such a 

network with the Back Propagation Learning algorithm. A neural network with a feed-

forward topology is used to achieve these results. The potential improvement points are 

to increase the image sampling rate and to use a system structure with a neural network 

controller in the feedback path. 

It is desirable to design a visual servo control system to be robust against variations 

in camera position and adjustments, environment conditions, object color, and 

background. There are a number of papers [35-36] that use global image feature 

extraction methods such as PCA and neural network in their system structure. These 

systems always lead to robust visual servoing systems for these types of variations. In [5], 

a Takagi-Sugeno Fuzzy Neural Networks Controller (TS-FNNC) [37] is presented using 

the image-based visual servoing technique. In this case Eigenspace based image 

compression is used as the global image feature transformation approach. No artificial 

marks are used and no previous knowledge of the camera calibration and the robot model 

is required. The manipulator is Motoman UP6 with 6DOF, and the camera configuration 

is eye-in-hand. A Gaussian membership function is selected for the TS-NNC. In this case 

only the area close to the fixed input point has a large membership quantity. Regions 

further from the fixed point have very low membership values that can be ignored. The 

TS-NNC is categorized using a local approximation neural network, such as a Wavelet 
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Neural Network or a Radial Basis Function Network. The learning algorithm for both 

premise and consequence parameters is Back Propagation. The visual servoing task is to 

transfer the end-effector to a desired pose using visual features. The target object is a 

metallic cylinder with a black radius on the surface. This research has the potential to 

create improvements in the following areas: 

 The TS-FNNC stability when applied to visual servoing applications. 

 Using Fuzzy Segmentation algorithm to improve the performance of TS-FNNC. 

 The utilization of a global feature extraction approach with more robustness and 

effective computational operations. 

 Implementation of a filtering technique to guarantee the robustness of the 

controller performance. 

 Adding a Background Subtraction algorithm to improve the feature extraction 

operations efficiency. 

Research in [3] has implemented an appearance-based visual learning system for 

fine-positioning applications. This system utilizes an adaptive non-linear controller for 

this purpose. The vision system has an eye-in-hand configuration which observes a 

region of about 11cm x 9cm in the x-y-plane. The Principal Component Analysis 

algorithm is used for image compression. This technique reduces the dimension of the 

primary camera images from 10,000 pixels to lower dimensions vectors that can be 

applied as inputs to the fuzzy neural network controller. It is demonstrated that this 

method builds a robust system that is stable against variations in environmental 

conditions. This approach does not require camera calibration and is used for three 
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degrees of the freedom visual servoing task. A B-spline model is selected to use in the 

construction of the fuzzy controllers. Off-line training and on-line evaluation are the 

system's two modes of operations. In the off-line mode a sequence is prepared which 

contains between 10 and 100 training image samples that show the object in different 

poses. The end-effector position in the plane is stored along with its rotation about the z-

axis with respect to the optimal grasping position for each image. In the online phase the 

camera image is transferred into the Eigenspace processing unit and then is applied to the 

fuzzy controller. The output of the neuro-fuzzy controller is the amount of the end-

effector’s position and the angle correction (Figures 4.3, 4.4). A set of different objects, 

including a blue cube, a yellow cube, a partly covered yellow cube, a yellow screw head 

and a ledge, is selected to test the performance of the system. The ledge is a rectangular 

plate which has three holes along its length. The lighting conditions for all training image 

samples were optimal. A particular controller was trained for each object. Only for the 

three cubes was the training limited to the yellow one. When the target object is the 

ledge, different training images for y and z were used. The three largest eigenvalues are 

determined and their related eigenvectors were applied as inputs to the fuzzy controller. 

 

Figure 4.3: Neuro-fuzzy model for the task based mapping [3]. 



 45 

 

Figure 4.4: PCA neuro-fuzzy controller in off-line and on-line phases [3]. 

Different sets of experiments were done after training the fuzzy controller. In these 

experiments the five objects were positioned from the most remote start points and under 

optimal, worse, and poor illumination conditions. The average error of 50 positioning 

tasks for each experiment is used to calculate the accuracy of the control system. Tables 

4.2 to 4.6 show the RMS error for x, y and the rotation angle for the positioning task of 

the different objects. The positioning task was apparently successful even for the blue 

cube with the fuzzy controller trained using only the yellow one. It can be seen that there 

is a slight difference in the translation if the illumination conditions are optimal or less 

optimal. The controller's performance gets worse in poor lighting conditions but the 

positioning task is still successful. The rotation is more affected by the illumination 

conditions, especially with the blue cube, because the vertical edges of the cube are hard 

to detect. 
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Table 4.2: RMS-error for a completely visible yellow cube under different lighting 

conditions 

Illumination x(mm) y(mm) α (degree) 

Optimal 0.399 0.665 0.608 

 
Worse 0.595 1.525 2.606 

 
Poor 3.126 1.038 6.059 

 
 

 

Table 4.3: RMS-error for a 20 percent visible yellow cube under different lighting 

conditions 

Illumination x(mm) y(mm) α (degree) 

Optimal 0.832 1.093 0.997 

 
Worse 0.524 2.373 1.141 

 
Poor 6.395 4.728 19.786 

 

Table 4.4: RMS-error for a blue cube under different lighting conditions 

Illumination x(mm) y(mm) α (degree) 

Optimal 1.658 0.946 1.481 

Worse 0.494 2.020 1.979 

Poor 1.006 0.928 10.803 

 

Table 4.5: RMS-error for a screw head under different lighting conditions 

Illumination x(mm) y(mm) α (degree) 

Optimal 0.630 0.535 1.850 

Worse 0.323 0.851 1.897 

Poor 0.610 0.751 1.281 
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Table 4.6: RMS-error for a ledge with 3 holes under different lighting conditions 

Illumination x(mm) y(mm) α (degree) 

Optimal 0.272 0.728 0.452 

Worse 0.940 0.704 0.386 

Poor 1.198 0.612 0.404 

 

This technique has the following benefits over traditional methods: 

 The vision system does not need calibration. 

 This approach does not require computationally high cost algorithms for edge 

detection, region growing, etc. 

 The B-spline interpolation and the eigenspace projection can be executed 

approximately in real-time. 

 Object recognition procedure does not need a model and it is not required to 

execute particular algorithms for each object. 

 The appearance-based method is robust against the changes in the object and the 

camera conditions. For example, if the target object is soiled or the camera focus 

is not properly adjusted, the system still works. 

An alternative approach is to utilize a Genetic Algorithm instead of a neural 

network as the learning algorithm. This is presented in [38] which involves a position-

based approach for visual servoing and pose estimation of an unknown target. The 

manipulator works in look-and-move mode to reach the object. This approach 

implements a Step Genetic Algorithm (Step-GA) and a pattern matching method to 

search for the target in the task space. The system consists of two main units. The GA 
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based controller and the machine vision system. The machine vision system uses the task 

space image and the GA-Pattern Matching algorithm. A PD controller based on the GA 

controls the manipulator. Each individual in the GA algorithm is encoded by means of a 

binary string that represents the position and orientation of the end-effector. This 

characterizes a candidate solution for the position and orientation of a target object in the 

image.          

The GA uses Step-GA evolution. Every generation of the GA's operation is applied 

to a new input image and supplies the manipulator with the momentarily desired joint 

angles qd. The path planned using GA can be performed in real time when a command 

vector is applied in every generation. A PD controller employs the temporary GA search 

results, which are computed in a short time. The end-effector can then follow the path to 

reach a goal, whose position and orientation are not formerly known without waiting until 

the end of the search procedure. The recognition system has the capability to compensate 

the translation and rotation errors. The GA acts as a path planner in this system. The 

proof of stability analysis for the controller is achieved by the Lyapumov theorem. 

The population in the GA consists of 60 individuals. The selection rate is 0.4, the 

mutation rate is 0.01, and the length of an individual is 23 bits. Simulation results show 

that the manipulator tracks a path towards the object while the GA is executing the 

search. The termination condition for the control criteria is acquired when 0.01 < -q qd  

rad. These results show that the system does not require a long time when executing the 

control law to move the end-effector to the position of an unknown block. This control 

approach may be appropriate for the real-time control of a manipulator. There are several 
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papers [39-41] that used GA neuro and GA Neuro-fuzzy algorithms in robotic control for 

visual servoing systems. 

The research in visual servoing with specifications close to that of the proposed 

system's framework is summarized in this section. Different Machine Learning 

algorithms such as Neural Networks, Fuzzy Neural Networks and Genetic algorithms are 

used in these works. The learning process for these systems is performed off-line. A 

visual servoing system with a self-learning methodology would have a great advantage 

over these existing approaches. In the next chapters, new self-learning visual servoing 

systems are introduced with learning that is performed in on-line episodes without human 

supervision.   

4.2 Machine Learning in Robotics  

For robots to be really flexible they require the capability to adapt to partially known 

workplaces or dynamic environments. These robots need to learn new tasks and to 

compensate for sensors and end-effector deficiencies. The problem of robot learning is 

basically to employ the robots to carry out tasks without the need for explicitly 

programming them. It can be assumed that robot learning is a particular case of the 

general problem of machine learning. Machine learning is a subfield of Artificial 

Intelligence (AI). The ultimate objective of machine learning is to substitute the explicit 

programming by teaching. Teaching is usually less difficult and more efficient than 

programming. There are two categories of learning: supervised and unsupervised [11]. In 

supervised learning a teacher evaluates the output of the learner, while in unsupervised 

learning the learner is provided with slight or no feedback regarding the learning job. At 
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least three kinds of knowledge can be determined that would be valuable for robots to 

learn. These are Control Knowledge, Environments Models, and Sensors-effector 

Models. From the different sorts of knowledge it seems clear that supervised learning 

alone is not sufficient. For example, when a robot works in an unknown environment or 

has to learn a new task, it must operate in an exploratory trial and error mode. Therefore 

robot learning needs both supervised and unsupervised approaches. 

Robot learning is a difficult machine learning problem. The following explanations 

are presented to clarify why robot learning is a challenging problem: 

 Unreliable Sensors: There are some devices in robotic systems that do not 

perform in a reliable manner. This problem is regardless of the price. Sonar and 

laser scanners are examples of these components. It is possible for these sensors 

and transducers to fail to detect the target, or that there is error in their distance 

measurement. This drawback can affect the whole performance of the robotic 

system.  

 Real time Performance: The robot must be able to reply to unanticipated 

conditions in its environment. This is particularly important for robot real time 

response. 

 Stochastic behavior: The nature of the actions and their complexity in the real 

world may seldom seem to be deterministic. Sensing inaccuracies can also be 

another source of stochastic behavior in robotic systems.  

 Learning in On-line mode: The training samples needed to teach a robot might not 

be accessible in the off-line mode. It is desirable for a robot to explore its 
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environment and to perform experiments to collect necessary samples. 

Incremental learning is an appropriate feature for any robotic learning approach 

since training data will be attained over time. 

 Restricted training time: Training time for a robot cannot be too long in the real 

world. An extended training time is acceptable in simulations. A reasonable 

training time for robotic systems in the real world can be a few hours or less. 

 Environment representations: A robot can perceive its work-space mainly through 

its sensors. A learning methodology must be capable of working with the 

limitations of the utilized sensors. 

There are four major machine learning paradigms that can be applied to a robotic 

learning problem: 

1. Inductive learning: This is the most classical paradigm in machine learning that 

includes several samples of the visual servoing systems described in the previous 

sections. The most well known Inductive Concept Learning algorithms are Neural 

Networks and Decision Trees. The principle bottleneck of inductive learning is that it 

needs an experienced teacher who can provide a sufficiently dissimilar set of training 

instances. It may be impractical to collect this training data in some applications. Another 

limitation of inductive learning methodology is the need for thousands of training 

samples for function approximators such as neural networks. One critical point is how to 

accelerate the speed of learning by integrating some kind of bias. 

2. Reinforcement Learning: This approach investigates the problem of inducing by 

trial and error to find a policy that maximizes a desired performance measure or reward 
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[13], [42]. Reinforcement learning is an unsupervised methodology in which training 

samples are not categorized by a teacher. The distribution of instances is affected by the 

robot's actions because the robot experiences the states and rewards pertaining to the 

actions it performs. The robot encounters a challenging temporal credit assignment 

problem. This is the evaluation of the optimality for available states and actions using a 

scalar reinforcement feedback. This approach has several interesting features. As opposed 

to some kinds of Inductive Learning algorithms, it can be implemented using on-line 

learning. The second property is that it can be used in many applications by providing the 

robot with appropriate reward functions. Reinforcement learning has a number of 

constraints. It can be very slow and needs a very large number of iterations to converge. 

It is also difficult to integrate domain knowledge to expedite the learning process. 

Existing research, such as [48-50], demonstrates the control of mobile robots by 

using neural networks in the implementation of Q-learning. In one study [48], the 

Reinforcement Learning algorithm is investigated to make an agent that learns from its 

own experience. An artificial neural network is used to assist the agent to learn in an 

unknown environment. A Team AmigoBot
TM 

mobile robot with 8 sonar sensors is used to 

locate the shortest path from the fixed starting point to the goal without hitting any 

obstacle. Each state corresponds to a vector of 10 parameters, which included 8 sensor 

readings, the relative distance from the mobile robot's current center of mass position to 

the goal, and the relative angle from the robot's current forward moving axis to the goal. 

At each time step, the robot is required to choose one of the three available actions: (1) 

move forward 100 mm, (2) turn 15° in clockwise direction, or (3) turn 15° in a counter-

clockwise direction. The learning process is divided into two stages. In the initial stage 
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the agent will map the environment by collecting state-action information according to 

the Q-learning procedure. The second training process involves neural network training 

which will utilize the state-action information gathered in the earlier phase as a training 

samples. At the end of the training process, the robot showed a certain degree of 

understanding about its environment. In cases where a goal was sought from a random 

position, the robot also managed to reach the goal.  

     In another study [49], Q-learning and a multi-layer neural network are applied to 

integrate learning in a behavior-based autonomous mobile robot. The simulated mobile 

robot used in this research is similar to the Pioneer 3. The task was to find a path from 

various initial points to the target without colliding with any obstacles. This was to be 

accomplished after a period of learning by itself in an unknown environment. Six sonar 

sensors and one camera were used to detect the robot's situation in the environment. In 

goal-directed obstacle avoiding, three main behaviors are included: turn left/right and 

move forward. Turn left/right can be divided into several sub behaviors. The neural 

network used here has one input layer with 7 neurons for establishing the distance of 

sonar sensors and the angle between the current direction and the target. It also has one 

hidden layer with 18 neurons, and one output layer with 7 neurons for 7 behaviors. After 

hundreds of learning epochs, the robot selects the best action according to its current 

state. Consequently the robot can arrive at the target without colliding with obstacles, and 

its trajectory is very smooth.  

     Researchers in [50] proposed a system for a Robot Soccer simulator. The task of 

the simulation was to train the agent to shoot the goal using reinforcement Q-learning 

method with a Back Propagation neural network. Ten dimensional environmental 
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variables are the inputs of neural networks and three actions are available. One hundred 

simulation experiments were conducted and the results were compared for both the neural 

network implementation of Q-learning and the traditional Q-learning methods in terms of 

shooting success. The results showed that the proposed method is more stable and 

effective for strategy selection.  

3. Evolutionary Learning: This is an unsupervised paradigm that includes Genetic 

algorithms. The capability to start with an appropriate set of policies is a significant 

strength of this approach. The evolutionary learning methodology permits the designer to 

initiate the system in a primed state which assists the speed of learning. Another benefit 

of this approach is that it is not limited to stationary policies and is able to learn arbitrary 

ones. The convergence is uncertain for general policies. A major limitation of the 

evolutionary approach is that it does not easily permit on-line learning. A training phase 

must be performed using a simulator and then the learned policy can be executed on a 

real robot. This restricts the method to those applications where a proper simulation is 

obtainable. 

4. Explanation-based Learning: It seems humans have the capability to generalize 

from a few examples. Humans make use of a significant amount of background 

knowledge to a learning task. Explanation-Based Learning (EBL) [43] investigates how 

domain knowledge can be employed to accelerate the learning process. An EBNN 

algorithm is an example of the EBL approach that is proposed by Mitchell and Thrun 

[12]. Domain knowledge is built as an approximate model of each available action and is 

expressed by a neural network in this method. These networks are trained using examples 

collected from an earlier learning task. The initial experiments applied an EBNN to the 
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problem of learning target object recognition for a mobile robot in [44]. A mobile robot 

moves through a corridor and learns to recognize the distant doors in this research. The 

previously learned knowledge includes a neural network that detects the adjacent doors 

and another network that foresees the state of the environment after moving forward in 

the corridor. The results confirm that the EBNN is capable of applying this previous 

knowledge to considerably decrease the required number of training samples. The 

principal benefit of the EBL is that it makes a solution for incorporating domain 

knowledge to speed-up the learning process. The reduction in the number of training 

samples required to learn the policy can be fairly considerable. The agent is required to 

have previously learned some domain knowledge.  

4.3 Chapter Summary 

The available research regarding visual servoing systems related to our proposed system 

was explored. Achieving a sufficient number of training samples for all learning-based 

visual servoing systems, such as those investigated in this research, is an important stage 

in the design and implementation of the system. When a robot encounters a set of 

different visual servoing tasks, new training with a new dataset is required. These training 

stages require extra time and engineering design expenses. If there is a methodology to 

reduce the required training dataset size and to transfer the learned knowledge between 

the different visual servoing tasks it can reduce the major bottleneck effect during the 

learning process of such systems. On-line learning with a minimum learning time, and 

therefore a minimum number of training samples, is especially desirable for the self-

learning visual servoing systems.  
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Reinforcement learning is an appropriate approach for self-learning systems among 

other machine learning paradigms, but its convergence can be very slow. EBL can be a 

proper solution to increase the speed of learning using previous domain knowledge. If a 

methodology is created which incorporates the Reinforcement learning and EBL, it can 

benefit from the strengths of both of these approaches, and speed up the convergence of 

the Reinforcement learning algorithm. 

The focus has been on improving the training sample numbers, and consequently 

reducing the learning time in self-learning visual servoing systems using Reinforcement 

learning and EBL. New self-learning visual servoing systems are proposed in the next 

chapters to reduce the size of the training dataset, and therefore shorten training time to 

achieve a specific positioning accuracy.  
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CHAPTER FIVE 

 

SELF-LEARNING VISUAL SERVOING OF A ROBOT MANIPULATOR USING                     

Q-LEARNING ALGORITHM AND FUZZY NEURAL NETWORKS  

5.1 Introduction 

A new self-learning visual servoing system for a robot manipulator is proposed in this 

chapter. The system uses reinforcement learning, and Q-learning, to find the optimal pol-

icy. This policy is applied by the robot to reach a predetermined object that has been         

randomly placed in the environment. The Q-learning algorithm is implemented using 

fuzzy neural networks to estimate the Q-evaluation function for each robot action. Each 

network is trained using the input state and the Q-value for the basic actions in on-line 

training episodes. The input to the system consists of extracted image features. A camera 

mounted on the robot’s end-effector captures the target image in each iteration and sends 

it to a feature extraction unit. This system learns the optimal policy in order to select the 

best action that maximizes the cumulative reward at each time step. This learning        

approach does not use robot or camera models, or require calibration.  

Designing robotic systems that are able to learn for executing complicated real-

world tasks is still a challenging problem in the area of robotics and machine learning. 

Most robots utilize particular controllers that have been accurately designed using broad 

domain knowledge. Designing the robot controller needs previous information about the 

robot, its kinematics, dynamics, working environment and the desired tasks. Such designs 

include writing the code for the hardware by hand. Generating the sensors and 

environment models require a large amount of programming effort. The complexity of 

programming the robot’s tasks increases with the complexity of the hardware and sensors, 
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and also when the robot must work in a less predictable environment. Reinforcement 

learning can overcome some of these limitations by enabling a robot to experiment and 

learn from its environment. Reinforcement learning responds to the problem of how an 

autonomous agent that senses and performs tasks in its environment can learn to select 

the optimal actions required to reach its goal.  

The Q-learning algorithm represented by Watkins and Dayan [45] is extensively 

employed to implement reinforcement learning. The Q-learning algorithm is selected 

from among other available algorithms to implement the on-line learning procedure. This 

algorithm has the benefit that it can be utilized when the agent has no previous 

knowledge of how its actions affect its environment. In Reinforcement learning, the 

framework is based on the Markov Decision Process. There are other Reinforcement 

learning algorithms such as Temporal Difference Learning and Monte Carlo methods. 

Temporal Difference algorithms learn by reducing discrepancies between estimates made 

by the agent at different times. Q-learning reduces the difference between the estimates of 

a state and its immediate successors. In comparison, Temporal Difference algorithms 

reduce discrepancies between estimates about this state and one that is more distant 

ahead. This makes the algorithm more complex and increases the computational cost. The 

Monte Carlo methods learn from simulated experience and solve a reinforcement 

learning problem based on averaging sample returns. In the Monte Carlo methods, 

convergence is always slow and only works in the small and finite Markov Decision 

Process. In Q-learning the environment consists of a set of states for the agent and a 

number of actions which the agent can carry out. A learning episode is a sequence of 

randomly selected states and actions. Each learning episode starts from a random point in 
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the robot's work-space. The agent initially observes the current state at every time step 

and then randomly picks an available action to perform. The agent receives an immediate 

reward or penalty based on its new state which reflects the desirability of the executed 

action. The old state is substituted with the new state and this process continues during 

training and builds a learning episode.  

The agent learns from the feedback and builds an evaluation function based on the 

states and actions. This evaluation function is determined as the maximum discounted 

cumulative reward the agent can attain. If the agent reaches the target during the learning 

episode then the evaluation function will be equal to its maximum value. If the agent fails 

to reach the target the evaluation function will be equal to its minimum value. With 

image-based visual servoing (IBVS) the dynamics of the system are usually expressed as 

a Jacobian matrix that relates the variations in the image features to the changes in the 

robot’s joint angles.  

Various stable and robust controllers have been investigated for use with this task. A 

wide range of Machine Learning algorithms such as Neural Networks, Radial Basis 

Functions, Fuzzy Neural Networks and Genetic Algorithms are employed in the 

controller design of robot manipulators [5]. The learning process for these systems is 

performed off-line. During this training process the robot is moved to different positions 

near the desired target point.  An image is the captured and saved with the corresponding 

robot joint angles for each end-effector. Image processing is then executed to extract the 

desired features from the stored images. The extracted image features and the 

corresponding robot joint angles are then used as the training samples for the neural 

network.  
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The proposed system is an IBVS which does not require Jacobian matrix 

calculations. On-line training is applied which differs from many of the existing systems 

mentioned above. The robot executes a random basic action to move its end-effector and 

the camera to a new position at every time step. Each basic action affects one of the 

robot’s joint rotations by a determined angle. For example, the joint J1 rotation with an 

angle of 5º can be defined as a basic action. The camera then captures an image which 

has features extracted from it. The Q-evaluation value for each basic action is then 

calculated. This value includes both an immediate and a delayed reward. The image 

features and related Q-values for each basic action are combined to create a training 

dataset of input and output pairs which are used for each Q-evaluation fuzzy neural 

network. 

  The evaluation function in the traditional Q-learning algorithm is expressed as an 

explicit look-up table with a table entry for each separate input value. This is the main 

constraint with Q-learning the algorithm will not perform generalizations. It means the 

algorithm does not try to estimate the Q-value for an unseen state-action pair by those 

that have previously been observed. A second limitation in Q-learning is that the work- 

space must be divided into a finite number of discrete regions for use as input states. 

When a random input state is converted to one of these discrete states it introduces a 

quantization error to the system. In this research the implementation of the Q-learning 

algorithm uses neural networks instead of look-up tables. Using a neural network in this 

way prevents rote learning and allows for generalization of previously unseen state-action 

pairs. Using a neural network in this manner can also eliminate the effects of quantization 

error. There is research [46-47] on visual servoing which has used a table implementation 
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of Q-learning. Previous works that have applied neural networks with Q-learning for 

mobile robots are detailed in papers such as [48-50], but to the author's knowledge, this is 

the first work to integrate Q-learning and artificial neural networks for implementation of 

a highly non-linear robot manipulator visual servoing system.  

5.2 Visual Servoing System Architecture 

The architecture of the proposed visual servoing system is illustrated in Figure 5.1.  The 

main parts of the system consist of the Q-learning evaluation unit, two sets of ANFIS for 

centering and reaching actions, the robot arm and robot controller, and the CCD camera 

and image feature extraction unit.  

 The Q-learning evaluation unit is used in the learning phase. This unit is divided 

into two units that work independently and calculate the QC and QR evaluation values for 

centering and reaching behaviors. 

 

 

 

 

Figure 5.1: Architecture of the proposed visual servoing system 

The inputs to this unit are the reference state and the current state of the agent. 

These are the target image features and current image features respectively. The target 

image features are captured by the camera-in-hand when the end-effector is at the desired 
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grasping position. The Q-learning evaluation unit estimates the immediate and delayed 

rewards at each time step based on the target and the agent’s current state. The QC and QR 

values at each time step are calculated and sent to the centering and reaching neuro fuzzy 

inference systems as training output samples.  

The image feature extraction unit sends the related training input samples to the 

neural network. The outputs of the centering and reaching neural networks, ∆θc1, ∆θc2, 

and ∆θc3, are the command signals, which are sent to the robot’s joints 1, 2, and 3. The 

robot controller receives these centering and reaching command signals and generates the 

proper torque vector τ to control the relevant robot joints at each time instance. 

 In the real-time visual servoing phase, the current image features are applied to the 

set of trained neuro fuzzy networks for the centering and reaching action. The basic 

action with the highest ANFIS Q-value output is selected and executed which transfers 

the end-effector to the new state. This sequence will continue until the goal state is 

reached. 

5.3 Proposed Learning Algorithm 

Learning occurs on-line and is performed using random episodes. After every instance 

that the robot performs a basic action, the extracted image features and calculated Q-

value are sent to the corresponding ANFIS as input/output training samples. The ANFIS 

on-line learning is based on the Recursive Least-Squares Estimator (LSE) algorithm [37]. 

The components of the learning algorithm are explained in the following sections. 
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5.3.1 Q-learning Algorithm 

The task of the agent in Q-learning is to learn a policy, π: S→A, for selecting its next 

action ai based on the current observed state si; that is, π(si)=ai. This optimal policy 

produces the greatest possible cumulative reward for the robot over time. If the 

discounted cumulative reward function is defined from the state si as follows [11]:        
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then the agent is required to learn the policy π that maximizes V
π
(s) for all states s. The γ 

is the discount rate parameter and 0≤γ<1. This optimal policy is denoted by π* [11]:    

                                                                                                                            (5.2)               

                                                                                                                                                               

The evaluation function Q(s,a) is specified in order that its value is the maximum 

discounted cumulative reward that can be reached starting from state s and performing 

action a as the first action. Equation (5.2) can be rewritten in terms of Q(s,a) as [11]: 

(5.3)                                                                                                                                                                     

      

The Q-evaluation value update is based on the Bellman Equation [51] as follows:     

                                                                                       

                 (5.4)                        

 

where λ is the learning rate and 0≤ λ <1.  A separate Q-learning process is executed for 

each of the centering and reaching behaviors. The first joint J1 rotation undertakes the 

centering behavior. The purpose of centering is to move the robot’s arms by rotating J1 

until the center of target image lies inside a boundary close to the camera’s Y axis. Six 

basic actions are dedicated for centering. These are J1 rotation with: ±1º, ±5º and ±10º. 

The second and third joints, J2 and J3, apply the reaching behavior. There are a total of 
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eight reaching basic actions which include J2 and J3 rotations with: ±1º and ±5º that are 

selected empirically. The aim of these actions is to move the end-effector and its attached 

gripper closer to the target. The reaching task is successful when the gripper is in position 

to grasp the object, and when the maximum error between the captured image features 

and the desired target image features is less than a predefined limit. This predefined limit 

can be determined based on the desired positioning accuracy. In this work a successful 

accuracy for centering and approaching the target is set to 0.01 as seen in Equations (5.8) 

and (5.9). This limit is equal to 10 pixels or a 0.1mm error in the camera image plane. 

When the goal position is reached the gripper mechanism will be actuated to grasp the 

target object. The three waist, shoulder and elbow joints of the robot are used in this 

research for the positioning task, but the proposed methodologies are not limited to three 

degrees of freedom and can be extended to higher number. 

For each iteration in a learning episode, one basic action is randomly selected using 

the Boltzmann distribution [52]. The probability of selecting an action ai at state si is 

determined by the following formula: 
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where T is the Boltzmann constant that can specify the degree of exploration and 

exploitation of the algorithm. Smaller values of T cause basic actions with higher Q-

values to be selected which leads to more exploitation. Larger T values permit the 

algorithm to choose basic actions with smaller Q-values which results in more 

exploration.  
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The immediate reward ri=r(si,ai) in the above formula helps the algorithm find the 

optimal solution in a smaller numbers of time steps. This is because the agent receives 

direct information about the error variations in the image plane. If Ft, Fi and Fi+1 

represent the target, the current, and the next image feature vectors respectively, then the 

immediate reward functions for the centering and reaching actions rci and rri at ith state 

can be calculated from the following formula: 

Centering immediate reward:           

                                             Erri+1=avg(Fi+1)-avg(Ft)                                           (5.6)                            

Erri=avg(Fi)-avg(Ft)                                                                                                                                                                       

Ki+1=100/(1+c1| Erri+1|)                                                                                                                                                                         

Ki=100/(1+c1| Erri|)                                                                                                                                                                                 

rci=c2(Ki+1- Ki) 

Reaching immediate reward:                       

                                                      Erri+1=Fi+1-Ft                                                (5.7) 

Erri=Fi-Ft 
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rri=c2(Ki+1- Ki) 

where c1 and c2  are constants. The values for c1 and c2 in the centering and reaching 

equations are c1=10, c2=1.6 and c1=2, c2=3 respectively. f is the number of extracted 
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image features. The criteria to determine the Q-evaluation values at each time step in the 

centering and reaching learning episodes are summarized in Equations (5.8) and (5.9).    
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5.3.2 Adaptive Neuro Fuzzy Inference Systems 

In this research Adaptive Neuro Fuzzy Inference Systems (ANFIS) are used to implement 

the Q-learning algorithm. Q-evaluation or target networks map the image features to the 

evaluation function Q for each basic action. This relation is highly non-linear.  

Hybrid Neuro-Fuzzy Systems (NFS) merge artificial neural networks and fuzzy 

systems in a synergetic approach. Fuzzy systems build a framework to symbolize 

inaccurate information and to reason with this sort of knowledge, while neural networks 

improve fuzzy systems with the ability to learn from input-output examples. Learning 

methods are applied to adjust the parameters of the fuzzy system. NFSs have become 

very popular in the last decades mainly due to their capabilities as universal function 

approximators. 

There are many kinds of neuro-fuzzy network architectures. The Adaptive Network 

based on Fuzzy Inference System (ANFIS) architecture is considered to demonstrate the 

hardware implementation of neuro-fuzzy systems. Jyh-Shing Roger Jang [37] has 
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presented the architecture and learning procedure of ANFIS. The Explanation-Based 

Fuzzy Neural Networks (EBFNN) have been introduced in this research. The reasons that 

using the EBFNN can lead to a higher performance of the proposed self-learning visual 

servoing systems when compared to the EBNN are: 

 The ANFIS can achieve a highly non-linear mapping. The relationship      

between the extracted image features and the robot’s joints space is highly 

non-linear and the EBFNN can establish this non-linear mapping with 

greater accuracy. 

 The ANFIS always requires fewer adjustable parameters in comparison to 

other networks such as MLP. This can reduce the required training iterations 

and time. Fuzzy neural networks are also used for target networks that map 

the captured image features onto the evaluation function Q. This relation is 

also non-linear and these networks are trained in on-line mode during the   

Q-Learning process in order to minimize the training time and the number of 

training samples. 

 Although not according to prior knowledge, the primary parameters of the 

ANFIS are intuitively rational and all the input space is covered. This leads 

to a fast convergence with proper parameter values that capture the funda-

mental dynamics and is suitable for this application. 

 The ANFIS is comprised of fuzzy rules which are local mappings or local    

experts as opposed to the global experts. These local mappings support the 

minimal disturbance principle [61]. This rule states that the adaption should 

not only decrease the output error for the present training sample but also 
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minimize disturbance to the response to what has been previously learned. 

This is mainly important in on-line learning. Using the least-squares to esti-

mate the output of each local mapping is particularly significant. The typical 

learning time would have been 5 to 10 times longer without the use of LSE. 

The ANFIS is therefore a good choice for Q-evaluation networks. The first-order 

Sugeno fuzzy model is utilized for this work. The structure of the neuro fuzzy model is 

shown in Figure 5.2. The figure shows an ANFIS with four inputs and two membership 

functions. The network used for this work has five membership functions and will have 

five nodes attached to each input node. The selection of this number of membership 

functions is a compromise between the mapping accuracy and the required processing 

time for the application. The first-order Sugeno neuro fuzzy network consists of five 

layers, as seen in Figure 5.2. These five layers include fuzzy membership functions, rules 

firing strength calculations, normalization, rule outputs, and overall network output. Each 

ANFIS has four inputs that are extracted from image features. These inputs are extracted 

point coordinates from the object in the image plane. The ANFIS output is the               

Q-evaluation function value. There is one ANFIS for each of the centering and reaching 

actions.  

The total number of centering and reaching ANFIS is six and eight respectively. 

There are two sets of network parameters that must be estimated during learning. The 

first group is the premise parameters that define input membership functions. A          

bell-shaped membership function with three parameters is used. These parameters control 

the centre, width, and slope of the membership function. This type of membership 

function has a smooth shape with a low number of parameters and is useful for highly 
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non-linear mappings. The second group is the consequent parameters. These are four 

layer parameters that have a linear relationship with the network output.  

 

     Figure 5.2: First-order Sugeno fuzzy model with 4 inputs and 2 membership functions. 

 

A hybrid learning approach is used which combines a Steepest Descent (SD) and a 

Least-Squares Estimator for a fast estimation of the parameters. The learning is 

performed in on-line episodes and ANFIS parameters are updated after each sample is 

presented. Each training iteration is comprised of two forward and one backward pass. 

The Least-Squares Estimator algorithm is applied in the forward pass to estimate the 

linear consequent parameters and Back Propagation is executed in the backward pass to 

update the non-linear premise parameters. The premise and consequent parameters are 

assumed to be fixed in the forward and backward passes respectively. The ANFIS hybrid 

training in the forward pass, as seen in Equation (5.10), is the general form of the LSE 

problem [37]. 

                                                            Aθ = y                                                       (5.10) 
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 In this equation θ is the consequent parameters vector. A is the design matrix that is 

constructed by the input training patterns and the normalized firing strengths, and y is the 

output training vector. For the (k+1)th new sample: a
T

k+1 θk+1 = yk+1. The Least-Square 

Estimator solution can be expressed by the recursive Equations (5.11) and (5.12) [37]. 
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                                  θk+1 =  θk + Pk+1 ak+1 (yk+1- a
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 In these equations:  Pk = (A
T
 A)

-1 
and (a

T
k, yk) is the kth row of A that is the kth data pair 

of the training data. 

5.4 Simulation Results and Discussion 

The proposed system is implemented using MATLAB. The robot manipulator used in the 

research simulations is a Puma 560 (Programmable Universal Manipulator for 

Assembly). This robot's structure is shown in Figure 5.3 [20] and includes 6-axis revolute 

joints. The Puma 560 is an enormously popular robot manipulator that features an 

anthropomorphic (human-like) design, electric motors, and a spherical wrist. The Puma 

560 robot was designed to have the approximate dimensions and reach of a human 

worker. It also has a spherical joint at the wrist just like a human. This robot is a very 

common laboratory robot and has been described as the "white rat" of robotics research. 

The Denavit and Hartenbergh link parameters of Puma 560 are summarized in Table 5.1.  

In this table: 

i: Joint axis number,       

αi-1: Link twist, 
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Figure 5.3: Puma 560 robot [67] 

 

Table 5.1: Link Parameters of Puma 560 

i αi-1 (deg) θi ɑi-1(m) di(m) 

1 0 θ1 0 0 

 
2 -90 θ2 0 0.2435 

3 0 θ3 0.4318 -0.0934 

4 90 θ4 -0.0203 0.4331 

5 -90 θ5 0 0 

6 90 θ6 0 0 

 

θi: Joint angle, 

 ɑi-1: Link length, and 

 di: Link offset.                                                                                                                                                       
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The camera has a resolution of 1024 x 1024, a focal length of 8mm and 10µm 

pixels. The camera configuration is eye-in-hand. There is no transition between the robot 

and camera in our experiments. The offset between the height of the camera and the end-

effector can be determined by a simple translation in the z axis direction if required. The 

target object is a cube with 20mm sides.  

The initial object position is (0.75m, -0.15m, -0.6m) with respect to the manipulator 

coordinate system. The Harris Corner Detector algorithm is applied for feature extraction 

to detect the cube's vertexes. The coordinates for the cube’s two top points in the image 

plane are the image features that will be normalized and sent to the ANFIS as training 

input samples. In the first step the end-effector is moved to the desired grasping position. 

The camera then captures the object image and stores it as the target image. This 

reference image is shown in Figure 5.5(a). The robot starts on-line learning episodes 

using a random initial orientation. The starting orientation for centering is within the 

region around the target with a ±60º deviation in the 3 first joint angles θ1, θ2, and θ3. The 

region for reaching behavior is determined by a ±30º deviation in joints angles θ2, and θ3.  

The total number of training episodes for centering and reaching are 300 and 200 

respectively. Each learning episode starts from a random point in the pre-defined region. 

A learning episode is terminated if the end-effector reaches the goal state or if the camera 

loses sight of the target object. If the camera loses sight of the object then the maximum 

penalty is assigned to the Q-value. This prevents losing the target image in the visual 

servoing phase. The values for the Q-learning parameters are the learning rate λ=0.7 and 

the discount factor γ=0.9. 
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  5.4.1 ANFIS Training and Validation Results 

The training input/output samples for six centering and eight reaching ANFIS networks 

are generated during the on-line episodes. The camera captures the image of the object in 

every time step of a learning episode. The image processing unit then extracts the corners 

of the object and the X-Y coordinates of these points in the image plane that makes a 

sample input training vector si. The output training sample for each input vector is a       

Q-value calculated using Equation (5.4). Another set of input/output samples are 

collected for centering and reaching ANFIS validation. These samples are from separate 

on-line random visual servoing episodes and are used to validate the performance of the 

fuzzy neural networks. The method for gathering validation samples is the same as for 

gathering training samples.  

Tables 5.2 and 5.3 include training and validation sample numbers and the Mean 

Square Error (MSE) for the centering and reaching behaviors. In these tables the MSE is 

calculated based on the normalized values and cannot be related back to real world 

dimensions. Each column of these tables consists of a number of training and validation 

samples and the MSE for an ANFIS related to one basic action. The last columns indicate 

the total number of samples and the MSE. As can be seen, the training and validation 

errors for all ANFIS are quite similar and are small. These results show that all ANFIS 

respond to both input training and validation instances with a high degree of accuracy. 

The ability of the ANFIS to generate accurate results for previously unseen inputs 

demonstrates its ability to generalize. 

Sample ANFIS membership functions for inputs 1 to 4 for the centering and 

reaching actions are shown in Figure 5.4. This figure illustrates how centre, width, and 
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slope of the sample membership functions are adjusted after on-line training of the 

ANFIS. In these membership functions, tuning is performed using Back Propagation of 

error during ANFIS training.  

Table 5.2: Centering training and validation samples and MSE 

 
B.A.1 
q1:+1º 

B.A.2 
q1:-1º 

B.A.3 
q1:+5º 

B.A.4 
q1:-5º 

B.A.5 
q1:+10º 

B.A.6 
q1:-10º 

Total 

Training 
MSE 

0.0089 0.0087 0.0067 0.0054 0.0055 0.0058 2.6147 

Training 
Samples 

965 976 858 875 837 846 5357 

Validation 
MSE 

0.0091 0.0083 0.0094 0.0056 0.0067 0.0062 2.7425 

Validation 
Samples 

929 965 835 836 766 799 5130 

 
 

Table 5.3: Reaching training and validation samples and MSE 

 
B.A.1 
q2:+1º 

B.A.2 
q2:-1º 

B.A.3 
q2:+5º 

B.A.4 
q2:-5º 

B.A.5 
q3:+1º 

B.A.6 
q3:-1º 

B.A.7 
q3:+5º 

B.A.8 
q3:-5º 

Total 

Training 
MSE 

0.0018 0.0014 0.0023 0.0016 0.0052 0.0019 0.0011 0.0015 1.0980 

Training 
Samples 

1305 1245 1171 1178 1325 1248 1237 1218 9927 

Validation 
MSE 

0.0019 0.0013 0.0021 0.0016 0.0053 0.0018 0.0011 0.0013 1.0847 

Validation 
Samples 

1212 1310 1229 1167 1280 1304 1225 1225 9952 

 

                                      (a)                                                              (b)    
 

Figure 5.4: Sample ANFIS final membership functions (a) centering, (b) reaching. 



 75 

The learning rate for the best performance of ANFIS is η=0.9 which is found empirically.  

5.4.2 Real-time Visual Servoing Results 

The simulation results are shown in Figures 5.5 to 5.9. These results are provided for 

three randomly selected near, far and extremely far real-time start points from the target. 

The joint angle deviations (Δθ1, Δθ2, Δθ3) from the robot joint angles at the desired 

grasping position are (5º, 25º,-45º), (15º, 60º, -100º) and (-25º, 100º, -140º) for near, far 

and extremely far start points respectively. 

The corresponding Cartesian coordinates of near, far and extremely far start points 

with respect to the manipulator coordinate system are (0.6712, -0.0919, -0.4969), 

(0.5580, -0.0059, -0.3038),  and (0.2706, -0.2916, -0.0618) respectively. These visual 

servoing start points are out of the learning episodes regions especially for the far and the 

extremely far start points. Several images captured by the camera are shown in Figure 5.5 

to illustrate the actual view from different positions. The final camera image is shown in 

Figure 5.5(a) where the camera and the reference target image completely match. Figure 

5.5 (b), (c) and (d) show the images captured by the camera at near, far and extremely far 

start points respectively. As can be seen from Figure 5.5(b) one corner of the target cube 

is out of the camera’s field of view but the object recognition and visual servoing tasks 

are successful. This is due to the capability of trained Q-evaluation fuzzy neural networks 

that generate proper Q-values when some of inputs are not present. 

  Figure 5.6 shows the manipulator when it is initialized close to the end location 

and when it is initialized at an extremely far starting location. The proposed system is an 

image-based visual servoing system. The control problem for this type of visual servoing 
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system can be expressed in terms of the image coordinates as was discussed in Chapter 3.  

The centering positioning error is defined in the camera image plane using the average 

image features error of Equation (5.6). This error is the difference in average image 

features at the next state and the target image. The average image features error curves 

are depicted in Figure 5.7 for the centering operation. The centering average features 

error for the near start point is shown in Figure 5.7 (a). The robot needs to perform only 

one basic action to center its end-effector relative to the target object position. The 

required centering basic action numbers for far and extremely far start points are 2 and 9 

respectively as illustrated in Figures 5.7 (b) and (c).  

The reaching positioning error is defined in the camera image plane using the image 

features error of Equation (5.7). This error is the difference between the image features 

vectors at the next state and the target image. The error curves for the reaching task, 

which start from three different points, are illustrated in Figure 5.8. The required number 

of basic actions for the end-effector to reach the target object position from the near, far 

and extremely far start points are 18, 108 and 199 respectively as seen in Figures 5.8 (a), 

(b) and (c). When the normalized average image features error for centering and the 

maximum image features error for reaching is less than 0.1mm (equal to 10 pixels) in the 

image plane then the end-effector is considered to have reached the target and the visual 

servoing is recognized as successful.  

The successful visual servoing results from various randomly selected starting 

points demonstrate the performance of the learning algorithm and its generalization 

capability. Figure 5.9 illustrates the trends for immediate rewards for the centering and 

reaching actions with an extremely far starting point. 
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(a) 

 

 

 (b) 

 

 

 

 (c)    
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(d) 

  

Figure 5.5: Target object images for different end-effector positions (a) reference image 

at desired grasping position, (b) near start point, (c) far start point, and (d) extremely far 

start point. 

 

 

 

 

(a)                                                                 (b) 

Figure 5.6: Robot manipulator positions (a) desired grasping position, (b) extremely far 

position. 

 



 79 

 

(a) 

 

(b) 

 

(c) 

Figure 5.7: Visual servoing centering average image features error (a) near start point, (b) 

far start point, and (c) extremely far start point.   
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(a)                                                              (b) 

 

 

                                                           (c)   

Figure 5.8: Visual servoing reaching average image features error (a) near start point, (b) 

far start point, and (c) extremely far start point.     
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(a) 

 

 

                                  (b) 

 
Figure 5.9: Visual servoing immediate reward (a) centering, (b) reaching. 

 
 

The immediate reward functions for the centering and reaching actions rci and rri at 

the ith state are calculated based on variations in the image features error between two 
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adjacent states as depicted in Equations (5.6) and (5.7). These immediate reward values 

are used in the main Q-learning Equation (5.4) to calculate the Q-evaluation values for 

the centering and reaching tasks in each iteration. Other terms in this formula are an 

effect of the cumulative rewards that have a significant role in the Q-values update. These 

figures however show that the immediate centering and reaching rewards are direct 

feedback from the environment to the agent, but the main criteria for the visual servoing 

performance is determined by the Q-evaluation values for these behaviors.  

5.5 Chapter Summary 

A self-learning system based on a neuro fuzzy implementation of the Q-learning 

algorithm for visual servoing is proposed in this chapter. The simulation results illustrate 

the successful performance of the learning system in a reasonable number of trial 

episodes. The robot is also capable of generalizing about its work-space.  This is due to 

the generalization capability of ANFIS to respond to unseen input states with acceptable 

accuracy after training. The intelligent behavior of the robot prevents it from losing track 

of the target object during real-time operation.   

The proposed system is image-based and does not require camera calibration. The 

control algorithm of this system is self-learning and the robot performs experiments in its 

work-space to extract input/output samples for the Q-evaluation FNN during on-line 

training. This type of system does not require a robot and camera model for its controller 

design. A limitation of existing image-based visual servoing systems is their use of the 

Jacobian matrix. The image Jacobian is a function of the distance between the camera 

and the object. This is hard to compute continuously and requires an inverse Jacobian that 
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makes the system unstable at its singular points. The proposed system does not require a 

Jacobian matrix calculation and therefore does not have this limitation. The results also 

demonstrate that using ANFIS is a successful solution for the implementation of Q-

learning in a continuous and highly non-linear work-space.  

The disadvantage of the proposed system is the increase in the number of on-line 

training iterations and the time required with both the number of input feature states and 

the number of ANFIS membership functions. The number of fuzzy rules and of ANFIS 

networks is determined by these two parameters. Higher numbers of input feature states 

and membership functions increases the number of connections between layers and the 

number of fuzzy rules in ANFIS. This leads to more calculations and therefore a longer 

processing time in on-line training. In applications where larger numbers of robot actions 

are needed, the number of ANFIS networks will increase. In this case more training 

samples and processing time are required to complete the on-line learning.  

In self-learning systems a smaller number of training samples and a shorter training 

time are desirable. Learning in the proposed system is performed in on-line episodes. If 

an approach was found to reduce the number of these training episodes, it would improve 

the system significantly. In the next chapter a methodology is proposed to reduce the 

number of on-line learning episodes, and therefore the total number of training samples 

for this system. The new system inherits the characteristics of the system discussed in this 

chapter and accelerates the on-line learning process by adding an analytical learning 

component to the existing inductive training. The new system is more complex and has a 

higher computational cost but it will reduce the total convergence time of the learning 

algorithm and improve the real-time visual servoing performance. 
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CHAPTER SIX 

 

SELF-LEARNING VISUAL SERVOING OF A ROBOT MANIPULATOR USING 

EXPLANATION-BASED FUZZY NEURAL NETWORKS AND Q-LEARNING  

6.1 Introduction 

A new self-learning visual servoing system for robot manipulators is discussed in this 

chapter. This system includes two main properties, on-line training and lifelong learning 

that are implemented using the Q-learning algorithm and Explanation-Based Fuzzy 

Neural Networks (EBFNN). It will be demonstrated that by combining the EBFNN and a 

Q-learning algorithm, the number of training samples, and therefore the training time 

needed for a specific robot positioning task, will be reduced. The system uses Q-learning 

to find the optimal policy based on Reinforcement learning. This policy is applied by the 

robot to reach a predetermined object that has been randomly placed in the work-space. 

Background knowledge about the robot and its environment is transferred to the agent 

during the learning process using a set of neural networks which have been previously 

trained. This system learns the optimal policy in order to select the best basic action that 

maximizes the cumulative reward received at each time step. This learning approach does 

not use robot or camera models, or require calibration. Simulation results demonstrate the 

effectiveness of this methodology to improve learning performance.  

Learning is an essential feature for the automatic design of autonomous robots. In 

the area of robotic learning there are normally a limited number of training samples 

available. If the task is more complicated and there is little knowledge about the work-

space, then more training instances are necessary for the system to accomplish the desired 

goal.  If the set of tasks which a robot must perform over its lifetime is considered, then it 
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would be desired to simplify learning, so new tasks can be learned more quickly. The 

hardware is assumed to remain constant in such a scenario. Lifelong learning allows for 

the transfer of background information between tasks. Complex tasks, which could need 

larger training sets, can be trained more quickly by using this method. Explanation-Based 

Neural Networks (EBNN) learning is proposed [12] as an approach for reducing the 

amount of training data necessary for reliable generalizations. The EBNN is based on 

combining of inductive and analytical learning to apply current training data and 

previously learned knowledge respectively. Through this training the robot may learn the 

invariants of the individual tasks and of the workspace. This task-independent knowledge 

builds Domain Theory, which can be learned by EBNNs and used to bias generalization 

when learning. This approach can decrease the necessity for real-world experimentation.  

 In self-learning robot control systems the training is on-line. A smaller number of 

training samples and a shorter training time are desirable in these systems. In this work a 

set of neural networks are initially trained off-line as action models for the basic tasks.  

 On-line learning is performed by Q-learning implemented using fuzzy neural 

networks as discussed in the previous chapter. The environment consists of a set of states 

for the agent and a number of actions which the agent can perform. A learning episode is 

a sequence of randomly selected states and actions. Each learning episode starts from a 

random point in the robot's work-space. The agent initially observes the current state at 

every time step and then randomly picks an available action to perform. The agent 

receives an immediate reward or penalty based on its new state which reflects the 

desirability of the executed action. The old state is replaced by the new state, and this 

process continues during training to build a learning episode. The agent learns from the 
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feedback and constructs an evaluation function based upon the states and actions. The 

evaluation function is determined as the maximum discounted cumulative reward that the 

agent can reach. If the agent achieves the target during the learning episode then the 

evaluation function will be equal to its maximum value. If the agent fails to reach the 

target the evaluation function will be set to its minimum value. 

The background knowledge of the robot and its environment are transferred from 

previously trained action model neural networks to the Q-learning process. The key point 

in understanding why EBFNNs can improve the performance of the Q-learning algorithm 

is due to the image Jacobian that is an inherent concept in visual servoing systems. In 

Image-Based Visual Servoing (IBVS) the dynamics of the system are usually expressed 

as an image Jacobian. A limitation of existing image based visual servoing methods is 

their use of the Jacobian matrix as a function of the distance between the camera and the 

target. It is difficult to calculate an inverse Jacobian continuously and this can make the 

system unstable at singular points. The proposed system does not require the Jacobian 

matrix to be calculated and therefore does not have this limitation. Trained action model 

neural networks store the changes in extracted image features (states) with the changes in 

robot joints (actions). These changes are partial derivatives (slopes) of the image features 

with respect to the robot joints that build the image Jacobian. The image Jacobian 

contains the robot and the camera model information. The trained action model neural 

networks include image Jacobian knowledge, and the visual servoing learning system 

will speed up the on-line learning of new robot tasks using this inherent knowledge. This 

knowledge is stored in action model neural networks which can be used throughout the 

life of the robot. 
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On-line training is used in the proposed visual servoing system. This differs from 

many of the existing neural network-based systems [3-5, 10, 34-36] in which the learning 

process is performed off-line. The Q-learning agent for this work is a robot manipulator 

with an attached camera. The agent performs tasks in its environment and provides the 

input and output training samples used in learning. The robot executes a random basic 

action to move its end-effector and camera to a new position at every time step. The 

camera captures an image which then has features extracted from it. The Q-evaluation 

value for each basic action is then calculated. This value includes both an immediate and 

a delayed reward. The image features and related Q-values for each basic action are 

combined to create a training dataset of input and output pairs which are used for each Q-

evaluation or target for a fuzzy neural network. Research such as [48-50] demonstrates 

visual servoing of mobile robots which use neural networks in the implementation of Q-

learning.  

Researchers in [66] presented a visual servo controller for a robot manipulator using 

neural network Reinforcement learning. It is, however, a hybrid approach that involves 

switching control between traditional image-based visual servoing and Reinforcement 

learning to enable the approaching behavior of the manipulator. In the traditional visual 

servoing phase of that research, calculation of the image Jacobian and depth estimation 

are necessary. 

Research involving robot learning using the EBNN is rare. The initial research on 

lifelong robot learning was performed by Sebastian Thrun and Tom M. Mitchell [53]. 

That research was limited to mobile robots. To the best of the author's knowledge, this 

research is the first work that integrates Q-learning and EBNN for visual servoing of a 
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robot manipulator. Another contribution of this research is the use of an Adaptive Neuro 

Fuzzy Interface System (ANFIS) in the EBNN structure in conjunction with the            

Q-learning algorithm.                                                                                              

6.2 Q-learning EBFNN Visual Servoing System Architecture 

The architecture of the proposed visual servoing system is illustrated in Figure 6.1.  The 

main components of the system consist of the Q-learning evaluation unit, two sets of 

Explanation-Based Adaptive Neuro Fuzzy Inference Systems (EB-ANFIS) and two sets 

of action model neural networks for centering and reaching behavior, the robot arm and 

robot controller, and the CCD camera and image feature extraction unit. 

The Q-learning evaluation unit is used during the learning phase. This unit is 

divided into two units that work independently and calculate the QC and QR evaluation 

values for centering and reaching behaviors. The inputs to this unit are the reference state 

and the current state of the agent. These are the target image features and current image 

features respectively. The target image features are captured by the camera-in-hand when 

the end-effector is at the desired grasping position. The Q-learning evaluation unit 

estimates the immediate and delayed rewards at each time step based on the target and 

the agent’s current state. 

The final QC and QR values at each time step are calculated and sent to the centering 

and reaching EB-ANFIS as training output samples. The image feature extraction unit 

sends the related training input samples to both sets of EB-ANFIS and action model 

neural networks. The derivative of centering and reaching action model outputs with 
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respect to the input image features, ∆BC/∆F and ∆BR/∆F is also calculated at each time 

step of online learning and is sent to the centering and reaching EB-ANFIS. 

 

Figure 6.1: Architecture of the Q-learning EBFNN visual servoing system 

The outputs of the centering and reaching EB-ANFIS, ∆θc1, ∆θc2, and ∆θc3 are the 

command signals which are sent to the robot’s joints 1, 2, and 3. The robot controller 

receives these centering and reaching command signals and generates a proper torque 

vector τ to control the relevant robot joints at each time instance. In the real-time visual 

servoing phase, the current image features are applied to the set of trained EB-ANFIS for 

the centering and reaching action. The basic action with the highest EB-ANFIS Q-value 

output is selected and executed to transfer the robot end-effector to the new state. This 

sequence will continue until the robot achieves the goal state. 

6.3 Learning Methodology Based on Inductive and Analytical Learning Algorithms 

EBFNN is based on a hybrid of inductive and analytical learning methodologies. After 

each time instance during a learning episode in which the robot performs a basic action, 
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the extracted image features and calculated Q-value are sent to the corresponding EB-

ANFIS as input/output training samples. This part of learning is based on inductive 

learning. The EB-ANFIS is provided with an additional set of inputs for use in analytical 

learning. The outputs of the action model neural networks are used to construct the 

domain theory when combined with the extracted image features. The Tangent-Prop 

algorithm is used to analyze the training examples to extract useful information which 

can then be used to refine the target networks. The components of the learning algorithm 

are explained in the following sections. 

6.3.1 The Q-learning Algorithm 

The Q-learning algorithm is the core of on-line learning. The same Q-learning algorithm 

that is discussed in section 5.3.1 is used here. EB-ANFIS is employed for this Q-learning 

algorithm implementation.  

 6.3.2 Basic Action Model Neural Networks 

An action model neural network for each defined basic task is built and trained off-line. 

Each network can estimate the next state (image feature) based on the given present state. 

The training samples for each basic task model neural network are in the format of 

(si,si+1). Data collection for action neural networks is done during training. Each training 

episode starts from a random point in the robot work-space. A camera is mounted on the 

end-effector which then captures an image. The image features are extracted and stored 

as the present state si in each time step. The robot then performs a random basic action 

and a new image is captured when this task is completed. The new image features are ex-

tracted and will be stored as next state si+1. This process continues by executing one ran-

dom basic action per episode. The related input/output samples for each basic action are    
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collected in a training dataset.  

The required number of action model neural networks for centering and reaching 

behavior is 6 and 8 respectively. The network’s outputs derivative with respect to the   

current state is calculated and sent to the EB-ANFIS at each time step that will be used 

for Q-evaluation training by the Tangent-Prop algorithm. 

6.3.3  Explanation-based Fuzzy Neural Networks 

The EBFNN are similar to the EBNN in that analytical and inductive learning are 

combined. The fundamental difference between inductive and analytical learning is that 

they suppose two different criteria for the learning problem: 

 In inductive learning a hypothesis space H is given to the agent, which then 

must choose an output hypothesis and a set of training instances                  

D = (xl, f(x1));...; (xn, f(xn)) where f(xi) is the target value for the sample xi. 

The desired output of the learner is a hypothesis h from H that is consistent 

with these training samples. 

 In analytical learning the agent has access to the same hypothesis space H 

and training instances D as for inductive learning. The agent is supplied 

with a supplementary input. This is a domain theory B which includes the 

background knowledge that can be used to describe observed training sam-

ples. The desired output of the agent is a hypothesis h from H that is consis-

tent with both the training instances D and the domain theory B. 

Explanation-based learning is a method for using approximate prior knowledge to 

improve the learner's ability to generalize from limited training data. Prior knowledge 
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consists of a collection of previously learned neural networks (the domain theory 

networks), with the function to be learned represented by an additional neural network 

(the target network). The EBNN algorithm uses the domain theory networks to analyze 

each training example, in order to extract information about the relevance of the different 

features of the example. This relevant information is then used, together with standard 

neural network induction, to constrain the weights of the target network. The target 

network is constrained both inductively by the training data, and analytically by the 

knowledge implicit in the domain theory.  

The key point is to analyze the training samples so that information is extracted in a 

form useful for refining the target network using the Tangent-Prop algorithm. This 

algorithm is an extension of Back Propagation that is able to adjust network weights to 

minimize the error in both the values and the derivatives of the function computed by the 

target network.  

Consider some target function F and a training example X consisting a vector of 

components xi. The Tangent-Prop algorithm iteratively adjusts the weights of the target 

network NET to minimize an error measure containing two terms. The first error term is 

the difference between the target function value F(X) and the value approximated by the 

network NET(X). The second error phrase is the difference between the partial derivatives 

of the target function dF(X)/dxi and the partial derivatives of the function represented by 

the target network dNET(X)/dxi. The EBNN obtains estimates of target values for 

dF(X)/dxi by using its domain theory to analyze training examples. 

The summary of the EBNN algorithm is as follows: 

For each training example: 
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(a) Explain how the training example satisfies the target function. Predict the value 

of the target function for the training sample using the domain theory networks. 

(b) Analyze this explanation to establish the relevance of the characteristics. Extract 

the partial derivatives of the explained target function value with respect to each training 

sample feature by checking the weights and activations of the domain theory networks in 

the above explanation. 

(c) Perform refining of the target function network. Update the weights of the target 

function to fit both the observed target function value (inductive component) and the 

target derivatives extracted from the explanation (analytical component). 

The domain knowledge in our proposed system is the robot and the invariants in the 

environment. This is represented by real-valued neural networks. There is an action 

network for each defined basic task. The agent learns the domain knowledge by training 

these action networks in a primary step. Whenever the robot encounters a new learning 

task, these previously learned action models can be used to bias the generalization in 

order to reduce the volume of the required training experience and time. This background 

knowledge can be transferred between the robot's tasks during its life using the EBFNN. 

If the robot is changed then it is required to perform the action models training for that 

particular robot hardware. 

ANFIS is used for the Q-evaluation fuzzy neural network. Q-evaluation or target 

networks map the image features to the evaluation function Q for each basic action. This 

relation is highly non-linear. The ANFIS can achieve highly non-linear mappings with a 

high performance. There is one ANFIS for each centering and reaching basic actions. Six 

centering and eight reaching robot basic actions have been defined; therefore the total 
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number of centering and reaching ANFIS is six and eight respectively. The core 

algorithm for ANFIS on-line learning is based on the Recursive Least-Squares Estimator. 

The Tangent-Prop algorithm is used for EB-ANFIS training. This algorithm is an 

extension of the Back Propagation algorithm that is able to adjust network parameters to 

minimize the error in both the values and the derivatives of the Q-evaluation function 

computed by the target networks.  

The first-order Sugeno fuzzy model with four inputs and five membership functions 

is used for this application. The selection of the number of membership functions is a 

compromise between the mapping accuracy and the required processing time for this 

particular application. The first-order Sugeno neuro fuzzy network [37] consists of five 

layers. These five layers include fuzzy membership functions, rule firing strength 

calculation, normalization, rules outputs, and overall network output. Each ANFIS has 

four inputs that are extracted from the image features. These inputs are coordinates of the 

extracted object points in the image plane. The ANFIS output is the Q-evaluation 

function value. 

There are two sets of network parameters that must be estimated during learning. 

These are premise and consequent parameters, as explained in the previous chapter. A 

hybrid learning approach is used which combines Tangent-Prop and the Least-Squares 

Estimator for fast identification of the parameters. Learning is in on-line episodes and the 

EB-ANFIS parameters are updated after each data presentation. A training iteration is 

comprised of two forward and backward passes. The Least-Squares Estimator algorithm 

is used in the forward pass to estimate the linear consequent parameters, and Tangent-

Prop is executed in the backward pass to update the non-linear premise parameters. The 
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premise and consequent parameters are assumed to be fixed in the forward and the 

backward passes respectively. The EB-ANFIS hybrid training in the forward pass, as 

seen in Equation (6.1), is the general form of the LSE problem [37] discussed in    

Chapter 5. 

                                                      Aθ = y                                                           (6.1) 

  In this equation θ is the consequent parameter vector, A is the design matrix that is 

constructed by the input training patterns and the normalized firing strengths, and  y is the 

output training vector. For the (k+1)th new sample: a
T

k+1 θk+1 = yk+1. The least-square 

estimator solution can be expressed by the recursive Equations (6.2) and (6.3) [37]. 

                            Pk+1 = Pk -
1kk1k

T

k1k
T

1kk

aPa

PaaP





1
              k=0,1, ..., P-1                    (6.2)    

                   θk+1 =  θk + Pk+1 ak+1 (yk+1- a
T

k+1 θk )                                     (6.3) 

 In these equations:  Pk = (A
T
 A)

-1 
and (a

T
k, yk) is the kth row of A that is the kth data pair 

in the training data. 

  The target value for a Q-value derivative in the current state si is calculated using 

the following equation: 

    (6.4)       

where
i

s

s

 ir is the immediate reward derivative with respect to the current state, 

1i
s

s

s






 ),aQ( 1i is a derivative of the EB-ANFIS network output for the next action with a 

maximum Q-value at the next state with respect to the input state, 
i

s

s

sB



 ),( ia
is a 
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is a derivative of the EB-ANFIS output for the current action with respect 

to the current state. The applied Tangent-Prop error formula [11] is: 

            (6.5) 

where:                                   

),(arg

i

ett aQ is
 
and ),(arg

i

ett aQ is  are the Q-evaluation EB-ANFIS output target and 

the output derivative target values respectively. The relative importance of the analytical 

and inductive learning components is determined in EBFNN by µi and defined in 

Equation (6.6): 

                                                                                                                               (6.6)                                              

 

In this equation ),( iaij sB is the jth output of the basic action model neural network 

and 1)j(is   is the jth element of the next state.  

The constant µc is chosen 1 for 0≤µi≤1. The value of µi is calculated by the 

discrepancy between the domain theory forecast from the action model neural networks 

and the robot’s actual next state. The weight µi is specified separately for each training 

sample, based on how accurately the action model neural networks estimate the next state 

of the robot. Consequently, the analytical component of learning is weighted more 

heavily for training instances in which the next states are predicted accurately by the 

action models and is suppressed for samples in which the next states have not been 

properly predicted. 
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6.4 Simulation Results and Discussion 

The proposed self-learning visual servoing system is implemented using the same robot 

and camera model and parameters explained in Chapter 5. The camera configuration is 

eye-in-hand. The target object is a cube with sides of 20mm. The initial object position is 

at (0.75m, -0.15m, -0.6m) with respect to the manipulator coordinate system. The Harris 

Corner Detector algorithm is applied for feature extraction to detect the cube vertexes. 

The coordinates of the cube’s two top points’ in the image plane are the desired image 

features that will be normalized and sent to the ANFIS as training input samples. In the 

first step, the end-effector is moved to the desired grasping position, and the camera 

captures the object's image, which is stored in the memory as the target image. The robot 

starts on-line learning episodes using random points in its work-space. The learning 

episodes' start points for centering are within the region around the target with ±60º 

deviation in the 3 first joint angles, θ1, θ2, and θ3. The region for reaching behavior is 

determined by ±30º deviation in the joint angles, θ2, and θ3. The acceptable real-time 

visual servoing region is not limited to these boundaries. A learning episode is terminated 

if the end-effector reaches the goal state or if the camera loses sight of the target object. If 

the camera loses sight of the object, then the maximum penalty is assigned to the Q-

value. This prevents the loss of the target image in the real-time visual servoing phase. 

The values for the Q-learning parameters are a learning rate of λ=0.9 and a discount 

factor of γ=0.9. 

  6.4.1 Action Model Neural Networks Training and Validation Results 

A total of 14 different neural networks with one hidden layer and 20 neurons are       

dedicated to the basic action models for centering and reaching. The action model neural 
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networks are trained offline. Training input/output samples are collected in random epi-

sodes and organized in a separate dataset for each basic action. The training algorithm 

that is used is the Levenberg-Marquardt Back Propagation algorithm, and logsig and 

purlin are used as activation functions for the hidden and the output layers respectively.  

Figures 6.2 and 6.3 are the training performance curves for the centering and the reaching 

neural networks respectively. Net1 to Net6, shown in Figures 6.2 (a) to (f), and Net1 to 

Net8, shown in Figures 6.3 (a) to (h), indicate the 6 centering and 8 reaching basic action 

networks respectively. In these figures, 1153 training, 247 testing and 247 validation 

samples were provided for each neural network. The number of training samples is 70% 

of the total samples.  

The remaining 30% of the total samples are divided equally between test and valida-

tion samples. These results show that the Mean Square Error Performance function 

reaches a very low limit in an acceptable number of training epochs. For each neural net-

work a separate second validation data set is gathered. The number of validation samples 

for each neural network is 1647. 

 

                                                              (a) 
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                                                                      (b) 

 

 

 (c) 

 

 

 (d) 
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  (e) 

 

  (f) 

Figure 6.2: Training performance curves for the centering action model neural networks:       

(a) Net1, (b) Net2, (c) Net3, (d) Net4, (e) Net5, and (f) Net6. 

 

            (a) 
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(b) 

 

(c) 

 

(d) 
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   (e) 

 

 

          (f)    

                                                                         

 

  (g) 
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          (h) 

Figure 6.3: Training performance curves for the reaching action model neural networks:       

(a) Net1, (b) Net2, (c) Net3, (d) Net4, (e) Net5, (f) Net6, (g) Net7, and (h) Net8. 

 

Table 6.1: Training and validation MSE for centering action models NNs 

1.0e-03 * Input 
B.A.1 
q1:+1º 

B.A.2 
q1:-1º 

B.A.3 
q1:+5º 

B.A.4 
q1:-5º 

B.A.5 
q1:+10º 

B.A.6 
q1:-10º 

Training 
MSE 

1 0.0038 0.0041 0.0175 0.0130 0.0373 0.0064 
2 0.0041 0.0037 0.0241 0.0126 0.0405 0.0055 
3 0.0177 0.0151 0.0513 0.0325 0.0445 0.0105 
4 0.0202 0.0176 0.0568 0.0384 0.0499 0.0130 

Validation 
MSE 

1 0.0047 0.0045 0.0249 0.0249 0.0367 0.0176 
2 0.0049 0.0033 0.0370 0.0198 0.0462 0.0159 
3 0.0184 0.0222 0.0918 0.0778 0.0678 0.0235 
4 0.0209 0.0258 0.1019 0.0917 0.0758 0.0288 

 

 
Table 6.2: Training and validation MSE for reaching action models NNs 

1.0e-03 * Input 
B.A.1 
q2:+1º 

B.A.2 
q2:-1º 

B.A.3 
q2:+5º 

B.A.4 
q2:-5º 

B.A.5 
q3:+1º 

B.A.6 
q3:-1º 

B.A.7 
q3:+5º 

B.A.8 
q3:-5º 

Training 
MSE 

1 0.0191 0.0289 0.0628 0.0583 0.0003 0.0023 0.0014 0.0019 
2 0.0159 0.0313 0.0656 0.0751 0.0003 0.0018 0.0015 0.0015 
3 0.0344 0.0406 0.1781 0.2092 0.0007 0.0023 0.0028 0.0043 
4 0.0350 0.0397 0.1793 0.2091 0.0006 0.0016 0.0027 0.0042 

Validation 
MSE 

1 0.0212 0.0447 0.0922 0.0751 0.0003 0.0027 0.0015 0.0021 
2 0.0209 0.0399 0.0997 0.0840 0.0003 0.0020 0.0018 0.0016 
3 0.0447 0.0553 0.2386 0.2466 0.0012 0.0032 0.0047 0.0050 
4 0.0445 0.0618 0.2431 0.2471 0.0009 0.0023 0.0044 0.0046 

 

The validation samples are generated using the same method that is used to create 
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the training samples. As depicted in these figures, all training convergence occurs in a 

reasonable number of epochs. 

Each column in Tables 6.1 and 6.2 consists of the training and the validation MSE 

for an action neural network related to one basic action. The numbers shown in these 

tables are scaled by 1.0e+03. As can be seen from these results, the training and 

validation errors are very low, which demonstrates that the action model networks can 

predict the next state of the robot after performing each basic action with a high degree of 

accuracy. 

  6.4.2 Explanation-based Fuzzy Neural Networks Training and Validation Results 

The input training vector si for the EB-ANFIS consists of the X-Y coordinates for the 

corners of the desired object in the camera's image plane. The output training sample for 

each input training vector is the calculated Q-value. Another set of input/output samples 

are collected for centering and reaching for the EB-ANFIS validation. These samples are 

from separate on-line random episodes and are used to validate the performance of the 

EBFNN. The method of gathering validation samples is the same as that used for the 

training samples.  

Tables 6.3 and 6.4 include a number of training and validation samples and the MSE 

for EB-ANFIS centering and reaching behavior. For these results, the number of on-line 

learning episodes for centering and reaching is 300 and 50 respectively. Each column in 

these tables consist a number of training and validation samples, and the MSE for an EB-

ANFIS related to one basic action. The last columns indicate the total sample numbers 

and the MSE. As can be seen, the training and validation errors for all EB-ANFIS are 
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quite similar and are very low. These results illustrate that all EB-ANFIS respond to both 

the input training and validation instances with a high degree of accuracy.  

The high performance of EB-ANFIS in generating accurate outputs for unseen 

inputs demonstrates its generalization capability. Sample centering and reaching 

membership functions for EB-ANFIS inputs 1 to 4 are shown in Figure 6.4. In this figure 

each membership function is shown by a different color. This figure illustrates how the 

centre, the width, and the slope of the sample membership functions are adjusted after on-

line training. Tuning of these membership functions is performed using the Tangent-Prop 

algorithm during EB-ANFIS training. The learning rate for the best performance of 

ANFIS is η=0.9, which is found empirically.    

Table 6.3: Centering training and validation samples and MSE for EB-ANFIS 

 
B.A.1 
q1:+1º 

B.A.2 
q1:-1º 

B.A.3 
q1:+5º 

B.A.4 
q1:-5º 

B.A.5 
q1:+10º 

B.A.6 
q1:-10º 

Total 

Training 
MSE 

0.0074 0.0124 0.0084 0.0093 0.0110 0.0070 3.7241 

Training 
Samples 

1043 1019 1003 972 867 836 5740 

Validation 
MSE 

0.0100 0.0149 0.0106 0.0129 0.0166 0.0094 3.1147 

Validation 
Samples 

654 658 563 584 567 571 3597 

 

 
Table 6.4: Reaching training and validation samples and MSE for EB-ANFIS 

 
B.A.1 
q2:+1º 

B.A.2 
q2:-1º 

B.A.3 
q2:+5º 

B.A.4 
q2:-5º 

B.A.5 
q3:+1º 

B.A.6 
q3:-1º 

B.A.7 
q3:+5º 

B.A.8 
q3:-5º 

Total 

Training 
MSE 

0.0098 0.0170 0.0129 0.0150 0.1036 0.0174 0.0657 0.0094 5.3042 

Training 
Samples 

344 324 312 277 352 318 288 310 2525 

Validation 
MSE 

0.0085 0.0134 0.0111 0.0110 0.0990 0.0136 0.0526 0.0074 6.9173 

Validation 
Samples 

537 532 484 500 475 530 486 500 4044 
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  (a) 

 

                                                                            (b) 

Figure 6.4: Sample EB-ANFIS final membership functions (a) centering, (b) reaching. 

 

6.4.3 Q-learning EB-ANFIS Real-time Visual Servoing Results 

These results are provided for three randomly selected near, far and extremely far real-

time start points. The joint angle deviations (Δθ1, Δθ2, Δθ3) at the desired grasping 

position are (5º, 25º,-45º), (15º, 60º, -100º) and (-25º, 100º, -140º) for near, far and 

extremely far start points respectively. 

The corresponding Cartesian coordinates of near, far and extremely far start points 

with respect to the manipulator coordinate system are (0.6712, -0.0919, -0.4969), 
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(0.5580, -0.0059, -0.3038), (0.2706, -0.2916, -0.0618). These visual servoing start points 

are not limited to the learning episode region. The real-time visual servoing start points 

for the far and extremely far start points are outside of the learning regions. This is done 

to investigate the generalization capability of the system. The successful visual servoing 

results from different randomly selected start points demonstrate the performance of the 

learning algorithm and its generalization capability. Figure 6.5 shows the manipulator at 

the desired target position and at an extremely far starting position. Visual servoing 

centering average image features error curves are depicted in Figure 6.6. These figures 

show that the robot end-effector's centering behavior is completed after performing 1, 2 

and 5 basic actions for near, far and extremely far start points respectively. The average 

image features error is reduced after executing each basic action until this error falls in 

the acceptable boundary. Two sample error curves for reaching from different start points 

are also illustrated in Figure 6.7. When the normalized average image features error for 

centering and the maximum image features error for reaching is less than 0.1mm (equal 

to 10 pixels) in the image plane then the end-effector is close enough to the target and the 

success of the visual servoing is recognized.  

Figure 6.8 illustrates the trends of centering and reaching immediate rewards for 

visual servoing with an extremely far episode start point. The Q-learning immediate 

reward functions for the centering and reaching actions rci and rri at the ith state, are 

calculated based on variations in the image features error between two adjacent states as 

depicted in Equations (5.6) and (5.7). These immediate reward values are used in the 

main Q-learning Equation (5.4) to update the Q-evaluation values. As can be seen from 

these figures however, the immediate reward is direct feedback from the environment to 
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the agent, but the Q-evaluation values have a final role in determining the visual servoing 

performance. 

 

 

  (a) 

 

 

 

 (b) 

 

Figure 6.5: Robot manipulator positions (a) desired grasping position, (b) extremely far 

position. 
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(a) 

 

 (b) 

 

(c) 

Figure 6.6: Q-learning EB-ANFIS visual servoing centering average image features error:  

(a) near start point, (b) far start point, and (c) extremely far start point.  
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   (a) 

 

  (b) 

 

(c)   

Figure 6.7: Q-learning EB-ANFIS visual servoing reaching average image features error:     

(a) near start point, (b) far start point, and (c) extremely far start point. 
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    (a) 

 

 

                                                                           (b) 

Figure 6.8: Q-learning EB-ANFIS visual servoing immediate reward (a) centering, (b) 

reaching. 
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  6.4.4 Comparison of Q-learning EB-ANFIS with Q-learning ANFIS Visual Servoing 

Results 

A set of experiments was performed that compared the learning and performance of a 

visual servoing system implemented using Q-learning EB-ANFIS and Q-learning ANFIS. 

The aim of these experiments is to investigate the effect of explanation-based analytical 

learning on real-time performance of the visual servoing system. Fourteen sets of online 

learning are performed for both systems. Between 25 to 300 random learning episodes 

are performed. Visual servoing tasks with random starting positions are executed for each 

system. The results of the real-time centering tests for systems with different numbers of 

learning episodes are illustrated in Figure 6.9 (a). This figure shows the centering success 

rates for different learning episodes. The table below Figure 6.9 (a) includes the number 

of learning episodes and the success rates for real-time visual servoing. The first row of 

this table consists of the on-line learning episode iteration numbers. The second and third 

rows depict the succeed rates for Q-learning EB-ANFIS and Q-learning ANFIS 

respectively. These results demonstrate that the system's performance is improved when 

using the EB-ANFIS. The positive effect of the EB-ANFIS is greater for smaller numbers 

of training samples. The EB-ANFIS success rate for 25 learning episodes is 69% which is 

21% higher than when using the ANFIS. This rate reaches 91% for 300 learning 

episodes. The ANFIS success rate for 300 learning episodes is 88%. Higher EB-ANFIS 

centering success rates are also achievable if the acceptable centering error is increased. 

The reaching task may still be successful for higher ranges of centering error. The same 

set of experiments is performed for the reaching task. Figure 6.9 (b) shows the variations 

in reaching success rate with learning episode numbers. The table below Figure 6.9 (b) 

contains the same types of information as the table below Figure 6.9 (a) but for reaching 
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behavior. This shows that the EB-ANFIS can achieve a 100% success rate after a 

minimum of 50 number learning episodes, but the ANFIS requires a minimum of 100 

learning episodes to achieve a 100% success rate. 

Figure 6.10 illustrates the centering and reaching Q-learning ANFIS visual servoing 

average image features error for an extremely far start point. If the results in Figure 6.10 

are compared with the same curves for Q-learning EB-ANFIS in Figure 6.6(c) and Figure 

6.7(c), it is evident that the successful tasks are achieved using fewer basic actions in the 

case of Q-learning EB-ANFIS.  

Centering basic action numbers for ANFIS and EB-ANFIS are 9 and 5 respectively, 

which demonstrates an 80% reduction in the number of required basic actions. The 

number of basic actions required for reaching using the ANFIS is 199. For the EB-

ANFIS this number is 125, which shows a 59.2% reduction in the number of required 

basic actions to complete the task.  

A comparison of the average number of basic actions for Q-learning EB-ANFIS and 

Q-learning ANFIS in the reaching task is summarized in Tables 6.5. The number of basic 

actions required to complete the reaching task for Q-learning EB-ANFIS and Q-learning 

ANFIS systems which were trained with 200 online episodes, are 87 and 127 

respectively. This shows 40 basic actions or a 31.5% reduction in the case of EB-ANFIS. 

These results demonstrate that explanation-based learning not only causes the visual 

servoing system to learn the determined task in considerably fewer training episodes, but 

that it also decreases the number of basic actions used in the real-time testing phase to 

complete the task. The statistical proof of these results is presented in the next chapter. 
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 (b)   

Figure 6.9: Comparison of Q-learning EB-ANFIS and Q-learning ANFIS real-time     

performance (a) centering, (b) reaching. 
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  (a) 

 

 (b) 

Figure 6.10: Q-learning ANFIS Visual servoing average image features error for an 

extremely far start point a) centering, (b) reaching. 

 

Table 6.5: Comparison of average basic action numbers for Q-learning EB-ANFIS and 

Q-learning ANFIS in the reaching task 

Episodes 25 50 75 100 200 

QLEBFNN - 115 85 92 87 

QLFNN - - - 122 127 
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6.5 Chapter Summary 

A self-learning visual servoing system based on the hybrid induction and analytical 

learning methodologies is proposed in this chapter. Online learning is performed using a 

Q-learning algorithm which is implemented by the EBFNN for a highly non-linear robot 

manipulator system in a continuous work-space. The simulation results illustrate the 

successful performance of the self-learning system in a reasonable number of trial 

episodes. The robot is also capable of generalizing about its work-space and can perform 

the visual servoing task from episode start points outside of its training data set 

successfully. The intelligent behavior of the robot prevents it from losing track of the 

target object during real-time visual servoing.  

The proposed visual servoing system does not require camera calibration because it 

does not need a robot and camera mathematical model for its controller design. Camera 

calibration is the procedure of estimating the camera's intrinsic and extrinsic parameters 

in relation to the world coordinate system. These parameters build the camera projection 

model and are unknown in practice. The camera's intrinsic parameters were discussed in 

matrix K of Equation (2.2). The camera pose at base coordinates c

oT̂ includes extrinsic 

parameters as introduced in Equation (3.2) of Chapter 3. The camera's principle point is 

not normally at the centre of the photosite array. The accuracy of the lens' focal length is 

only 4% of what it claims to be, and is only accurate if the lens is focused at infinity. If 

the lens is detached and reattached, or adjusted for focus or aperture, it is common for the 

intrinsic parameters to change. The only intrinsic parameters that may probably be 

acquired from the sensor manufacturer's data sheet are the photosite dimensions 

determined by scaling factors ku and kv along the u and v axes in Equation (2.2). 
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Estimation of camera's intrinsic and extrinsic parameters in the calibration process causes 

an error in locating the center point of the camera. This error can affect the performance 

of traditional visual servoing systems that need a camera projection model in the 

controller design. The calibration methods rely on sets of world points whose relative 

coordinates and also whose analogous image plane coordinates are known, and are 

always a tedious and time consuming task. 

The proposed system also does not require a Jacobian matrix calculation, which is 

always needed for image-based visual servoing systems. The results also demonstrate that 

using explanation-based learning can improve the learning process and the real-time 

performance of the system. Q-learning with EB-ANFIS, in comparison to Q-learning 

with ANFIS, learns the visual servoing task in a considerably lesser number of online 

episodes. It also improves the real-time performance of the system by reducing the 

required numbers of basic actions to fulfill the visual servoing task.     

The learning algorithms, which are discussed in this and the previous chapters, are 

methodologies to find the optimal policy for learning procedures and the real-time 

performance of the system, and will be on the top level of robot manipulator controller 

design.  The stability of the total system depends on the specific design of the controller 

for the robot arm. The statistical hypothesis proof for the obtained results will be 

presented in the next chapter. 
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CHAPTER SEVEN 

 

STATISTICAL HYPOTHESIS TESTS  

7.1 Introduction 

In this chapter statistical hypothesis tests are used to demonstrate the statistical 

significance of the results explained in the previous chapter. 

Having set the null hypothesis, the probability of the observed data sample is 

calculated as if the null hypothesis were true. This probability is known as the p-value. 

Smaller p-values suggest that the null hypothesis is less likely to be true. If the p-value is 

small, then it is said that the data is unlikely to have happened if the null hypothesis were 

true. The null hypothesis is not disproved; instead, the sample is unlikely but not 

impossible. If the p-value is not small, then it is said that the data is consistent with the 

null hypothesis. There are many different types of statistical significant proof. When a p-

value is low it is said that the observed sample value is significantly different from the 

hypothesized population value. The lower the p-value, the more significant it is said to 

be. If the p-value is very low, it is said the result is highly significant. It is a fairly 

common practice for p-values of less than 0.05 to be called 'significant', whilst those > 

0.05 are said to be 'non-significant'.  

The test that is appropriate for a given situation will depend on the type of outcome 

variable being studied (categorical or numerical) and the number of variables is 

considered. Significance tests yield a p-value which quantifies how likely a null 

hypothesis is to be true.  

Two statistical tests are used: T-test and the Wilcoxon-Mann-Whitney U test that 

are parametric and non-parametric test types respectively. In parametric statistics [54] the 
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assumption is that the data has originated from a particular probability distribution and is 

composed of deductions about the distribution parameters. In non-parametric statistics 

[55] the populations do not have a specific distribution or parameters. Parametric 

methods make more assumptions than non-parametric approaches. Parametric methods 

can generate more precise estimates if those additional assumptions are correct. The 

parametric techniques can be misleading if those assumptions are wrong. For that reason 

two tests have been selected from two different categories: parametric and non-

parametric. 

  7.1.1 T-Test 

This test is used when a numerical variable is considered and the averages of two 

separate populations or groups are compared [56]. The T-test is normally employed if the 

samples have a normal distribution. The null hypothesis tends to be that there is no 

difference between the means of the two populations. The t value is calculated using the 

following Equation [56]: 
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where x and y are the sample means, xs and 
ys are the sample standard deviations, and m 

and n are the sample sizes. 

7.1.2 Wilcoxon-Mann-Whitney U Test 

The Wilcoxon-Mann-Whitney U test [57] is a non-parametric test. This test compares 

two groups, treatments or conditions without the assumption that the values are normally 

distributed. It can be applied to both normal and non-normal distributions. The 
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requirements of this test are two random, independent samples with an ordinal, interval or 

ratio scale of measurement. The null hypothesis asserts that the medians of the samples 

are identical. The following steps are performed to find the test results for large sample 

numbers: 

1. Organize all the samples into a single ranked series.  

2. Calculate the rank of all data without considering the sample's source. 

3. Add the ranks for the observations that are belong to sample 1 and 2 to find R1 and 

R2 respectively. 

4. Calculate the U1 and U2 values using Equations (7.2) and (7.3) [57]. 

5. Compare the smaller value of U1 and U2 with the critical values in significance     

tables. These tables cannot be used for n>20, and p value can be computed using 

the normal distribution approximation. 
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The T-test and the Wilcoxon-Mann-Whitney statistical test for QLEBFNN and 

QLFNN systems results are discussed in the following section.  

7.2 Statistical Tests for QLEBFNN and QLFNN Visual Servoing Systems 

A comparison of Q-learning EB-ANFIS with Q-learning ANFIS visual servoing results 

are described in the previous chapter. These results include: 

1. The real-time visual servoing success rates for QLEBFNN and QLFNN systems 

for centering and reaching behaviours. 
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2.  The real-time visual servoing basic action counts of QLEBFNN and QLFNN      

systems required for centering and reaching behaviour. 

A test for normal distribution for each of the above samples is executed using the    

z-test function. The null hypothesis for this test is that the collected data are a random 

sample from a normal distribution with a specified mean m and a standard deviation, 

against the alternative hypothesis that the mean is not m. The result of the test points is to 

prove or reject the null hypothesis at the 5% significance level. The results show that all 

sample distributions for centering and reaching success rates, and basic action counts of 

QLEBFNN and QLFNN systems is approximately normal. The above outcomes show the 

reliability of the T-test results. However, two parametric and non-parametric tests are se-

lected to demonstrate the significant importance of the results regardless of the assump-

tion that samples are normally distributed. 

The T-test and the Wilcoxon-Mann-Whitney statistical test are performed for each 

of the above results and are summarized in the following sections. 

7.2.1 Statistical Tests for QLEBFNN and QLFNN Centering Success Rates 

The results of real-time centering visual servoing for systems with different total numbers 

of learning episodes are illustrated in Figure 6.9 (a). These results are applied to perform 

the statistical tests: 

1. T-test: Tests the null hypothesis that the samples come from populations with 

equal means. These are the mean success rates for centering using the QLEBFNN 

and QLFNN compared against the alternative that the means are not equal. The 

test rejects the null hypothesis at α = 0.01 significance level, T-value = 3.0212, 

and p-value = 0.0064. 
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2.  The Wilcoxon-Mann-Whitney test: Tests the null hypothesis that the samples 

come from populations with equal medians, against the alternative that the medi-

ans are unequal. The test rejects the null hypothesis at α = 0.01 significance level. 

The p-value = 0.0081, and z-score = 2.6467. The U-value is 40. The critical value 

of U at α ≤ 0.01 is 42.  

7.2.2 Statistical Tests for QLEBFNN and QLFNN Reaching Success Rates 

The results of real-time reaching visual servoing for systems with different numbers of 

learning episodes are illustrated in Figure 6.9 (b). These results are used to perform the 

statistical tests: 

1. T-test: Tests the null hypothesis that the samples come from populations with 

equal means (the means for reaching success rates using the QLEBFNN and 

QLFNN), against the alternative that the means are unequal. The test rejects the 

null hypothesis at α = 0.05 significance level, T-value = 2.4859, and p-value = 

0.0245. 

2.  Wilcoxon-Mann-Whitney test: Tests the null hypothesis that the samples come 

from populations with equal medians, against the alternative that the medians are 

unequal. The test rejects the null hypothesis at α = 0.01 significance level. The    

p-value = 0.0038, and z-score = 2.8966. The U-value is 11.5. The critical value of 

U at α ≤ 0.01 is 16.  

7.2.3 Statistical Tests for QLEBFNN and QLFNN Centering Basic Action Counts 

The results of real-time centering visual servoing for systems using 300 learning episodes 

are illustrated in Figures 7.1 (a) and (b). The success counts are 91 and 88 for QLEBFNN 

and QLFNN respectively. In these figures the horizontal axis is the successful real-time 
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visual servoing experiment number, and the vertical axis is the required basic action 

counts that robot has performed for a successful visual servoing centering task. These 

results are used to perform the statistical tests: 

1. T-test: Tests the null hypothesis that the samples come from populations with 

equal means (the means of the centering basic action counts for QLEBFNN and 

QLFNN), against the alternative that the means are unequal. The test rejects the 

null hypothesis at α = 0.01 significance level, T-value = -4.9545, and p-value = 

1.6860e-06. 

2.  Wilcoxon-Mann-Whitney test: Tests the null hypothesis that the samples come 

from populations with equal medians, against the alternative that the medians are 

unequal. The test rejects the null hypothesis at α = 0.01 significance level. The    

p-value = 5.2811e-09, and z-score = 5.8381. The U-value is 2011. The distribu-

tion is approximately normal. Therefore, the above Z-value can be used. 

7.2.4 Statistical Tests for QLEBFNN and QLFNN Reaching Basic Action Counts 

The results of real-time reaching visual servoing for systems using 200 learning episodes 

are illustrated in Figure 7.2 (a) and (b). The success counts are 73 and 71 for QLEBFNN 

and QLFNN respectively. In these figures the horizontal axis is the successful real-time 

visual servoing experiment number, and the vertical axis is the required basic action 

counts that robot has performed for a successful visual servoing reaching task. These 

results are used to perform the statistical tests: 

1. T-test: Tests the null hypothesis that the samples come from populations with 

equal means (the mean of the reaching basic action counts for QLEBFNN and 

QLFNN), against the alternative that the means are unequal. The test rejects the 
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null hypothesis at α = 0.01 significance level, T-value = -5.6061, and p-value = 

1.5175e-07. 

2.  Wilcoxon-Mann-Whitney test: Tests the null hypothesis that the samples come 

from populations with equal medians, against the alternative that the medians are 

unequal. The test rejects the null hypothesis at α = 0.01 significance level. The    

p-value = 1.0849e-08, and z-score = 5.7169. The U-value is 1160.5. The distribu-

tion is approximately normal. Therefore, the Z-value can be used. 

 

 

(a) 

 

(b) 

Figure 7.1: Centering basic action counts (a) QLEBFNN and (b) QLFNN. 
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(a) 

 

(b) 

Figure 7.2: Reaching basic action counts (a) QLEBFNN and (b) QLFNN 

 

These analyses demonstrate the statistical significance of the results for QLEBFNN 

and QLFNN. It has therefore been statistically proven that explanation-based learning 

allows the system to learn the task in considerably fewer training episodes and also 

decreases the required amount of basic actions used to complete the task. The explained 

statistical test results for QLEBFNN and QLFNN are summarized in Table 7.1. 
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Table 7.1: Statistical test results for QLEBFNN and QLFNN 

Data 
Sample 

Test Result 
Significance 

Level (α) 
Test Parameters Comment 

Centering 
Success 

Rate 

T-test 
 

Rejects 
the null     

hypothesis 
 0.01 

T-value = 3.0212, 
p-value = 0.0064 

 

W.M.W. 
test 

Rejects 
the null     

hypothesis 
0.01 

p-value = 0.0081, 
z-score = 2.6467 

U-value=40 
U(Critical)=42 

at α ≤ 0.01 

Reaching 
Success 

Rate 

T-test 
 

Rejects 
the null     

hypothesis 
 0.05 

T-value = 2.4859, 
p-value = 0.0245 

 

W.M.W. 
test 

Rejects 
the null     

hypothesis 
0.01 

p-value = 0.0038, 
z-score = 2.8966 

U-value=11.5 
U(Critical)=16 

at α ≤ 0.01 

Centering 
Basic    
Action 
Counts 

T-test 
 

Rejects 
the null     

hypothesis 
 0.01 

T-value = -4.9545,    
p-value =  

1.6860e-06 
 

W.M.W. 
test 

Rejects 
the null     

hypothesis 
0.01 

p-value =  
5.2811e-09,          

z-score = 5.8381 

U-value=2011 
 

Reaching 
Basic    
Action 
Counts 

T-test 
 

Rejects 
the null     

hypothesis 
 0.01 

T-value = -5.6061, 
p-value =   

1.5175e-07 
 

W.M.W. 
test 

Rejects 
the null     

hypothesis 
0.01 

p-value =   
1.0849e-08,         

z-score = 5.7169 

U-value= 
1160.5 

 

 

7.3 Chapter Summary 

In this chapter two statistical hypothesis tests are applied to prove the statistical 

significance of the results obtained for the proposed visual servoing systems. The real-

time visual servoing success rates and the basic action counts of the two systems are 

collected into separate groups. Then T-test and U-test are implemented on groups of 

samples for the QLEBFNN and QLFNN systems. The analysis proves the statistical 

significance of the results. 
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CHAPTER EIGHT 

 

CONCLUSIONS AND RESEARCH FUTURE DIRECTIONS 

8.1 Conclusions 

Two new self-learning visual servoing robotic manipulator systems are proposed in this 

research. These employ Q-learning to find the optimal policy based on reinforcement 

learning. This policy is utilized by the robot to reach a predetermined object that has been 

randomly placed in the environment.  

Q-learning implementation requires the definition of states and actions pairs. The 

input state consists of extracted image features. A camera mounted on the robot end-

effector captures the target image in each iteration and sends it to a feature extraction 

unit. The Harris Corner Detector algorithm is selected for feature extraction to detect the 

object vertexes. Each basic action is one of the robot joint rotations with a determined 

angle. For example, the J1 rotation with an angle of 5º can be defined as a basic action.  

The Q-learning algorithm is implemented using fuzzy neural networks to estimate 

the Q-evaluation function for each robot action. Each fuzzy neural network is trained 

using the input state and the Q-value for the basic action in on-line training episodes. 

These self-learning systems learn the optimal policy in order to select the best basic 

action that maximizes the cumulative reward received at each time step. The proposed 

systems are image-based visual servoing systems and do not require camera calibration. 

This type of visual servoing system does not need a robot and camera mathematical 

model for its controller design. The proposed systems also do not require a Jacobian 

matrix calculation which is always needed for image-based visual servoing systems.  
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In the first system the Q-learning algorithm is implemented using ANFIS to 

estimate the Q-evaluation function for each action. This system is based on pure 

inductive learning and is described in Chapter 5. The simulation results illustrate the 

successful performance of the learning system in a reasonable number of trial episodes. 

The robot is also capable of making generalization about its work-space.   

The main contributions of this research for the first system are as follows: 

 The Q-learning algorithm is implemented using neural networks for a highly           

non-linear robot manipulator visual servoing system. The architecture of the   

proposed system is illustrated in Figure 5.1 that shows the Q-learning implemen-

tation for centering and reaching behaviour using neural networks. The original 

Q-learning algorithm uses look-up tables instead of neural networks. Using neural 

networks in this way prevents rote learning and improves generalization of         

Q-learning with previously unseen state-action pairs. Using neural networks in 

this manner can also eliminate the effects of quantization error.   

 Another contribution is the use of the Adaptive Neuro Fuzzy Interface System     

(ANFIS) for function approximation in conjunction with the Q-learning             

algorithm. The ANFIS can achieve highly non-linear mappings with a high         

performance level. The ANFIS requires fewer parameters than other network            

architectures such as multilayer feed forward neural networks. This can decrease 

the necessary number of training iterations and the training time. The use of   

ANFIS leads to a fast convergence of parameters that accurately estimate the   

fundamental dynamics. The ANFIS includes a set of fuzzy rules, which are local 

mappings, and is particularly important in on-line learning. The results of ANFIS 
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training in on-line episodes are summarized in Tables 5.2 and 5.3. These tables   

include training and validation sample numbers and Mean Square Error (MSE) for 

centering and reaching behavior. These results show that all ANFIS respond to the 

both the input training and the validation instances with a high degree of accuracy. 

The high performance level of ANFIS in generating accurate outputs for the un-

seen inputs illustrates its generalization capability. Real-time visual servoing cen-

tering and reaching average image features error curves are depicted in Figure 5.7 

and 5.8, which demonstrate the successful performance of the learning system in a 

reasonable number of trial episodes. 

In the second system explained in Chapter 6 an analytical learning component is 

added. This system includes two main properties, on-line self training and lifelong 

learning which are implemented by the Q-learning algorithm and EBFNN respectively. 

Reducing the required training samples and therefore the learning time, is desirable 

for a self-learning system. The target for such a system is to reduce the size of the 

training dataset and still be able to achieve a determined accuracy. Q-learning and 

EBFNN are used to implement on-line learning with a reduced number of training 

samples, and therefore training time. Using the EBFNN makes transferring the 

knowledge between different tasks during the system’s lifetime possible.  

For example, this system could be used in a flexible manufacturing plant where a 

robot manipulator is installed for parts assembly consisting of pick up and place tasks. 

This robot could perform several different tasks during its life. It is necessary to program 

and train the robot for each new task, which will require more engineering design time 

and expense. The proposed systems can also be used in applications in which an accurate 
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mathematical model for the robot and camera are not available, such as planetary 

exploration. The proposed visual servoing system is based on self-learning that does not 

need off-line training for new tasks. Off-line initial training is executed for basic tasks to 

build the domain knowledge in action neural networks after it has been installed in the 

environment.  

On-line learning is established using Q-learning for each new task. Background 

knowledge is stored in action neural networks and will be transferred to new tasks during 

on-line learning to reduce the required training samples and time. Trained action neural 

networks store the changes in extracted image features (states) with the changes in robot 

joints (actions). These changes are partial derivatives (slopes) of the image features with 

respect to the robot joints that build the image Jacobian. The image Jacobian contains the 

robot and camera model information. These trained neural networks are used to learn the 

new tasks during on-line training. They transfer the image Jacobian knowledge stored in 

these networks to increase the speed of the learning process. It can be concluded that the 

trained EBFNNs take the place of the image Jacobian and contain the inherent knowledge 

of a visual servoing system. This knowledge is stored in EBFNNs and can be used 

throughout the life of the robot.  

The main contributions of the research for the second system are as follows: 

 This work integrates Q-learning and explanation-based neural networks for visual 

servoing of a robot manipulator. The proposed system architecture is shown in 

Figure 6.1, which illustrates the integration of Q-learning and explanation-based 

ANFIS for centering and reaching behaviour. 

 A contribution of this research is the use of an ANFIS with an EBNN structure in 
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conjunction with a Q-learning algorithm. Tables 6.3 and 6.4 include training and 

validation sample numbers and the MSE for EB-ANFIS centering and reaching 

behaviour. As can be seen, the training and validation errors for all EB-ANFIS are 

quite close together and have low values. These results show that all EB-ANFIS 

respond to both the input training and the validation instances with a high degree 

of accuracy. Figures 6.6 to 6.10 include the results of the Q-learning EB-ANFIS 

and its comparison with the Q-learning ANFIS. The results demonstrate that the 

use of explanation-based learning improves the learning process and the real-time 

performance of the system. Q-learning with EB-ANFIS, in comparison to Q-

learning with ANFIS, learns the task in considerably fewer online episodes. It also 

improves the real-time performance of the system by reducing the required count 

of basic actions needed to fulfill the task.   

A statistical proof of the above results is presented in Chapter 7. Two statistical 

tests, T-test and the Wilcoxon-Mann-Whitney U test, are used to prove the statistical 

significance of the results. The T-test analysis tests the null hypothesis that the samples 

come from populations with equal means (the centering and reaching success means for 

QLEBFNN and QLFNN), against the alternative that the means are unequal. The 

Wilcoxon-Mann-Whitney U analysis tests the null hypothesis that the samples come from 

populations with equal medians (centering and reaching success medians for QLEBFNN 

and QLFNN), against the alternative that the means are unequal. The same tests are 

performed for the required count of basic actions to complete the centering and reaching 

tasks.  
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8.2 Research Future Directions 

Implementation of the proposed self-learning visual servoing systems using a real robot 

manipulator can be a future research area. For this purpose some key points should be 

considered for system integration. The image frame grabber hardware and software is 

needed to provide an interface between a camera mounted on the robot and a computer. 

The frame grabber captures an individual digital image from a video stream and sends it 

to the computer. The image features extraction algorithm, on-line learning, and Real-time 

Visual Servoing algorithms are executed by the computer. An interface program is 

required between the computer and the robot manipulator controller to send the robot’s 

joints command signals. The robot controller receives the centering and reaching signals 

and generates the proper torque vector to control the relevant robot joints at each time 

instance.  
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