Skip to main content
Log in

Feasibility Study of Attitude Determination for All-Rotating Unmanned Aerial Vehicles in Steady Flight

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

All-rotating unmanned aerial vehicles (UAVs) are an interesting subgroup of unmanned aerial vehicles because of their excellent aerodynamics and simple construction. The flight control principle of these vehicles is similar to that of the helicopters. However, due to the all-rotating nature of these vehicles, their flight control mechanism must rely solely on attitude determination. Since the all-rotating aerial vehicles spin at very high angular velocities, the problem of attitude determination requires special attention. This paper deals with the feasibility issues of attitude determination for all-rotating UAVs, based on observations of the gravity and magnetic field vectors. It presents the analysis of magnetometer and accelerometer applicability on board the all-rotating UAV platform, revealing the problematic effects which arise from high spin velocities. The problem of attitude determination is simplified for steady flight, followed by the proposition of a method for eliminating the spin-induced acceleration and a corresponding calibration procedure. Both methods are evaluated in a controlled test environment simulating the steady flight conditions. Test results serve as a proof of concept, making the application of the proposed methods reasonable for future real-flight experimentation and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakula, M., Hockley, C., Khatri, R., Kirby, C., Sammet, C., Reinholtz, C.: A natural evolution in flight : The design and development of the SamarEye system, A method for searching closed Quarter Environments. In: First Symp. on Indoor Flight Issues, pp 1–12. Mayagüez, Puerto Rico (2009)

  2. Beer, F.P., Johnston, E.R.J., Mazurek, D.F., Cornwell, P.J., Eisenberg, E.R.: Vector Mechanics for Engineers: Statics and Dynamics, 9th edn, chap. 9. McGraw-Hill, Boston (2010)

  3. Bekkeng, J.K.: Prototype Development of a Low-Cost Sounding Rocket Attitude Determination System and an Electric field Instrument. Phd thesis, University of Oslo, Oslo, Norway (2007). http://tid.uio.no/~jankbe/Filer/PhD_JKB_200207.pdf

  4. Bonnet, S., Bassompierre, C., Godin, C., Lesecq, S., Barraud, A.: Calibration methods for inertial and magnetic sensors. Sensors Actuators A Phys. 156 (2), 302–311 (2009). doi:10.1016/j.sna.2009.10.008. http://linkinghub.elsevier.com/retrieve/pii/S0924424709004324

    Article  Google Scholar 

  5. Brown, T.G.: Harsh military environments and microelectromechanical (MEMS) devices. In: Sensors, 2003. Proceedings of IEEE, vol. 2, pp. 753–760. IEEE (2003), doi:10.1109/ICSENS.2003.1279042

  6. Cappa, P., Patanè, F., Rossi, S.: Two calibration procedures for a gyroscope-free inertial measurement system based on a double-pendulum apparatus. Meas. Sci. Technol. 19, 055–204 (2008). doi:10.1088/0957-0233/19/5/055204

    Article  Google Scholar 

  7. Davis, B.S.: Using low-cost MEMS accelerometers and gyroscopes as strapdown IMUs on rolling projectiles. In: Position Location and Navigation Symposium, pp. 594–601. IEEE. Palm Springs, CA (1998), doi:10.1109/PLANS.1998.670218

  8. Davis, B.S., Denison, T., Kuang, J.: A monolithic High-G SOI-MEMS accelerometer for measuring projectile launch and flight accelerations. Shock. Vib. 13 (2), 127–135 (2006). doi:10.1155/2006/793564. http://www.hindawi.com/journals/sv/2006/793564/abs/

    Article  Google Scholar 

  9. Don Koks: Explorations in Mathematical Physics: The Concepts Behind an Elegant Language, 2006 edn. Berlin, Springer (2006)

    Google Scholar 

  10. Fang, B., Chou, W., Ding, L.: An optimal calibration method for a MEMS inertial measurement unit. Int. J. Adv. Robot. Syst. 11(14) (2014). doi:10.5772/57516

  11. Fregene, K., Bolden, C.L.: Dynamics and control of a biomimetic single-wing nano air vehicle. In: American Control Conference 2010, pp 51–56. Warwick and York, Baltimore, Maryland, USA (2010)

  12. Fregene, K., Sharp, D., Bolden, C., King, J., Stoneking, C., Jameson, S.: Autonomous guidance and control of a biomimetic single-wing MAV. In: AUVSI Unmanned Systems Conference, pp 1–12, Washington, DC, USA (2011)

  13. Gamble, G.A., Hockley, C., Yatsko, A., Currier, P.: Issues facing the development of a single-winged rotorcraft’s control system. In: IEEE Southeastcon, pp 1–4, Orlando, Florida, USA (2012)

  14. Harkins, T.E.: Assessing the feasibility of accelerometer-only inertial measurement units for artillery projectiles. Tech. rep., Army research lab aberdeen proving ground, MD (1994). http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA286386

  15. Harkins, T.E.: Understanding body-fixed sensor output from projectile flight experiments. Tech. Rep. September, Army research lab aberdeen proving ground, MD (2003). http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA418331

  16. Haus, T., Cesic, J., Orsag, M.: Spincopter test flight (2012). http://www.youtube.com/watch?v=54Q2bL8XaAE

  17. Hockley, C., King, M., Khatri, R., Kirby, C., Sammet, C., Bakula, M., Reinholtz, C.: Development of a monocopter for exploration of GPS-denied indoor environments. In: 2010 Second Symposium on Indoor Flight Issues, pp 1–12. Mayagüez, Puerto Rico (2010)

  18. Houghton, J., Hoburg, W.: Fly-by-wire Control of a Monocopter. Technical report, EECS, UC Berkley, Cambridge, MA, USA (2008). https://docs.google.com/file/d/0B3suSD5Oh7F8SU9qcEtMamhCY0k/edit

  19. Houghton, J., Hoburg, W.: MIT monocopter testing - stable hover (2009). http://www.youtube.com/watch?v=1n6ZmwzSL0Y

  20. Jameson, S., Fregene, K., Chang, M., Allen, N., Youngren, H., Scroggins, J.: Lockheed Martin’s Samarai Nano Air Vehicle: Challenges, Research, and Realization. In: 50th AIAA Aerospace Sciences Meeting, January, pp 1–21, Nashville, TN, USA (2012)

  21. Jurman, D., Jankovec, M., Kamnik, R., Topič, M.: Calibration and data fusion solution for the miniature attitude and heading reference system. Sensors Actuators A Phys. 138(2), 411–420 (2007). doi:10.1016/j.sna.2007.05.008 http://linkinghub.elsevier.com/retrieve/pii/S0924424707003834

    Article  Google Scholar 

  22. Krč, J., Jankovec, M., Topič, M.: Elektronika na poti od detektorja do osrednjega dela sistema = Electronics on the way from a detector to the central system unit. Informacije MIDEM = J. microelectronics, electronic components and materials 32(4), 298–302 (2002)

    Google Scholar 

  23. Kuipers, J.: Quaternions and rotation sequences: a primer with applications to orbits, aerospace, and virtual reality. chap. 4 . Princeton University Press, Princeton (1998). doi:10.5860/choice.37-0370

    Google Scholar 

  24. Lockheed, M.: Samarai - A maple seed-inspired UAV (2012). http://www.youtube.com/watch?v=n_q_DD_4LNg

  25. Long, D.F., Lin, J., Zhang, X.M., Li, J.: Orientation estimation algorithm applied to high-spin projectiles. Meas. Sci. Technol. 25(6), 065–001 (2014). doi:10.1088/0957-0233/25/6/065001

    Article  Google Scholar 

  26. Obradovic, B., Ho, G., Barto, R., Fregene, K., Sharp, D.: A multi-scale simulation methodology for the samarai monocopter micro UAV. In: AIAA Modeling and Simulation Technologies Conference, vol. 4, pp. 1–12. Minnesota (2012), doi:10.2514/6.2012-5012

  27. Orsag, M., Cesic, J., Haus, T., Bogdan, S.: Spincopter wing design and flight control. J. Intell. Robot. Syst. 70(1-4), 165–179 (2012). doi:10.1007/s10846-012-9725-2. http://www.springerlink.com/index/10.1007/s10846-012-9725-2

    Article  Google Scholar 

  28. Reinholtz, C.F., Hockley, C.J., Khatri, R., Gamble, G.A., Sammet, C., Godinez, L.: Development of a digitally manufactured autonomous monocopter. In: Spring IMAV 2011, pp 1–5. Huntsville, Alabama, USA (2011)

  29. Reitsma, C.: A novel approach to vibration isolation in small, unmanned aerial vehicles. In: Technologies for Practical Robot Applications, 2009. TePRA 2009. IEEE International Conference on, pp. 84–87. IEEE, Woburn, MA (2009), doi:10.1109/TEPRA.2009.5339638. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5339638

  30. Schopp, P., Klingbeil, L., Peters, C., Manoli, Y.: Design, geometry evaluation, and calibration of a gyroscope-free inertial measurement unit. Sensors Actuators A Phys. 162 (2), 379–387 (2010). doi:10.1016/j.sna.2010.01.019. http://linkinghub.elsevier.com/retrieve/pii/S0924424710000208

    Article  Google Scholar 

  31. Schuler, A.R., Grammatikos, A., Fegley, K.A.: Measuring rotational motion with linear accelerometers. IEEE Aerosp. Electron. Syst, IEEE Transac. on AES-3(3), 465–472 (1967). doi:10.1109/TAES.1967.5408811

    Article  Google Scholar 

  32. Shuster, M.D., Oh, S.D.: Three-axis attitude determination from vector observations. J. Guid. Control. Dyn. 4(1), 70–77 (1981) http://doi.aiaa.org/10.2514/3.19717

    Article  MATH  Google Scholar 

  33. Tikka, T.: Attitude Determination and Control System Implementation for 3-Axis-Stabilized Nanosatellites. Master’s thesis. Aalto University, Espoo, Finland (2012). http://lib.tkk.fi/Dipl/2012/urn100578.pdf

    Google Scholar 

  34. Titterton, D., Weston, J.: Strapdown Inertial Navigation Technology, 2nd Edition. Institution of Engineering and Technology (2004 ). doi:10.1049/PBRA017E

  35. Ulrich, E.R., Humbert, J.S., Pines, D.J.: System identification and control of mechanical samara micro-air-vehicles AIAA J. Aircr. pp. 1–14

  36. Ulrich, E.R., Pines, D.J., Gerardi, S.: Autonomous flight of a samara MAV. In: American Helicopter Society 65th Annual Forum, pp. 1–10. Grapevine, Texas, USA (2009)

  37. University of Maryland: Worlds first controllable robotic samara monocopter MAV, University of Maryland’s Ulrich flyer (2009). http://www.youtube.com/watch?v=sbuGCgc-JCM

  38. Youngren, H., Jameson, S., Satterfield, B., Martin, L., Technology, A., Hill, C.: Design of the SAMARAI Monowing Rotorcraft Nano Air Vehicle. In: American Helicopter Society Int. 65th Annu. Forum and Technology Display (Aircraft Design), pp. 1–13. Grapevine, Texas, USA (2009)

  39. Zhu, R., Sun, D., Zhou, Z., Wang, D.: A linear fusion algorithm for attitude determination using low cost MEMS- based sensors. Measurement 40(3), 322–328 (2007). doi:10.1016/j.measurement.2006.05.020. http://linkinghub.elsevier.com/retrieve/pii/S0263224106001072

    Article  Google Scholar 

  40. Zhu, R., Zhou, Z., Sun, X.: A novel miniature azimuth-level detector based on MEMS. 2001 Microelectromechanical Systems Conference (Cat. No. 01EX521) pp. 50–53. doi:10.1109/MEMSC.2001.992740 (2002). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=992740

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gašper Matič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matič, G., Jankovec, M., Jurman, D. et al. Feasibility Study of Attitude Determination for All-Rotating Unmanned Aerial Vehicles in Steady Flight. J Intell Robot Syst 80, 341–360 (2015). https://doi.org/10.1007/s10846-014-0173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0173-z

Keywords

Navigation