Skip to main content
Log in

Design and Validation of an RGB-D Based Localization System - Integration in a Docking System

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes a localization system for a mobile robot based on odometric data and RGB-D (Red, Green, Blue image and Depth map) measurements relative to a landmark, available from sensors installed on board. The localization system is composed of two cascaded estimators: i) a kinematic optimal attitude estimator; and ii) a position estimator designed in body-frame, based on an underlying LPV (Linear Parameter Varying) model, that avoids the need of approximations or linearization. Both underlying models are observable, even considering the presence of angular and linear slippages and the resulting estimators present globally asymptotically stable estimation error dynamics. Experiments to assess the performance of the proposed estimators were carried out resorting to a wheeled differential drive mobile robot in a laboratory instrumented with a Qualysis Motion Tracking System, used for ground-truth validation. An effective real-time localization system is obtained, featuring convergence to zero of the estimated errors, regardless the initial estimate and without requiring the landmark to be always visible, thus validating the system global stability. The results obtained paved the way to the integration of the proposed localization solution in a docking system for the same robot. The docking problem is solved with a smooth, time-invariant, globally asymptotically stable feedback control law, which allows for a very human-like closed-loop steering that drives the robot to a certain goal with a desired attitude and tunable curvature. Simulation and experimental results with the aforementioned robot are also presented, that illustrate the performance of the docking solution based on the proposed localization methods central to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegwart, R., Nourbakhsh, I., Scaramuzza, D.: Introduction to autonomous mobile robots, 2nd edn. MIT press, Cambridge (2011)

    Google Scholar 

  2. Blaer, P., Allen, P.: Topological mobile robot localization using fast vision techniques. In: Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 1, pp 1031–1036, IEEE (2002)

  3. Andreasson, H., Duckett, T.: Topological localization for mobile robots using omni-directional vision and local features. In: Proceedings of IAV, pp. 53–58. IFAC, Lisbon (2004)

  4. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (slam): part ii. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  5. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  6. Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the ekf-slam algorithm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3562–3568, IEEE (2006)

  7. Huang, S., Dissanayake, G.: Convergence and consistency analysis for extended kalman filter based slam. IEEE Trans. Robot. 23(5), 1036–1049 (2007)

    Article  Google Scholar 

  8. Batista, P., Silvestre, C., Oliveira, P.: Optimal position and velocity navigation filters for autonomous vehicles. Automatica 46(4), 767–774 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Batista, P., Silvestre, C., Oliveira, P.: On the observability of linear motion quantities in navigation systems. Syst. Control Lett. 60(2), 101–110 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Groover, M.: Automation, production systems, and computer-integrated Manufacturing, 3rd edn. Prentice Hall Press, Upper Saddle River, NJ (2007)

    Google Scholar 

  11. Hada, Y., Yuta, S.: A first-stage experiment of long term activity of autonomous mobile robot - result of repetitive base-docking over a week. In: Experimental Robotics VII, pp. 229–238. Springer, Berlin Heidelberg New York (2001)

  12. Agin, G.J.: Real time control of a robot with a mobile camera. SRI International (1979)

  13. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 (1992)

    Article  Google Scholar 

  14. Samson, C., Espiau, B., Borgne, M.: Robot control: the task function approach. Oxford University Press, Oxford, UK (1991)

    Google Scholar 

  15. Skaar, S., Yalda-Mooshabad, I., Brockman, W.: Nonholonomic camera-space manipulation. IEEE Trans. Robot. Autom. 8(4), 464–479 (1992)

    Article  Google Scholar 

  16. Lefebvre, O., Lamiraux, F.: Docking task for nonholonomic mobile robots. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp 3736–3741, IEEE (2006)

  17. Batista, P., Silvestre, C., Oliveira, P.: A two-step control strategy for docking of autonomous underwater vehicles. In: American Control Conference (ACC), pp 5395–5400, IEEE (2012)

  18. Feezor, M.D., Sorrell, F., Blankinship, P., Bellingham, J.: Autonomous underwater vehicle homing/docking via electromagnetic guidance. IEEE J. Ocean. Eng. 26(4), 515–521 (2001)

    Article  Google Scholar 

  19. Park, J., Jun, B., Lee, P., Lee, F., Oh, J.: Experiment on underwater docking of an autonomous underwater vehicleisimi’using optical terminal guidance. In: Oceans 2007-Europe, pp 1–6, IEEE (2007)

  20. McCarthy, C., Barnes, N., Mahony, R.: A robust docking strategy for a mobile robot using flow field divergence. IEEE Trans. Robot. 24(4), 832–842 (2008)

    Article  Google Scholar 

  21. Kim, M., Chong, N.: Direction sensing rfid reader for mobile robot navigation. IEEE Trans. Autom. Sci. Eng. 6(1), 44–54 (2009)

    Article  Google Scholar 

  22. Luo, R., Liao, C., Su, K., Lin, K.: Automatic docking and recharging system for autonomous security robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2005), pp 2953–2958, IEEE (2005)

  23. Ito, S., Endres, F., Kuderer, M., Diego Tipaldi, G., Stachniss, C., Burgard, W.: W-rgb-d: floor-plan-based indoor global localization using a depth camera and wifi. In: IEEE International Conference on Robotics and Automation (ICRA), pp 417–422, IEEE (2014)

  24. Barbosa, J., Cardeira, C., Oliveira, P., Batista, P., Silvestre, C.: Design and validation of a sensor-based localization algorithm. In: IEEE International Conference on Autonomous Robot Systems and Competitions, pp 98–103, IEEE (2014)

  25. Qualysis motion capture system. http://www.qualisys.com. Accessed: 2013-07-10

  26. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  27. Aicardi, M., Casalino, G., Bicchi, A., Balestrino, A.: Closed loop steering of unicycle like vehicles via lyapunov techniques. IEEE Robot. Autom. Mag. 2(1), 27–35 (1995)

    Article  Google Scholar 

  28. Brockett, R.: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory, pp. 181–191. Defense Technical Information Center (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cardeira.

Additional information

This work was partially supported by the program COMPETE/QREN/FEDER under PRODUTECH-PTI (P. 3904) and FCT, through IDMEC, under LAETA Pest-OE/EME/LA0022 and ISR/LARSyS PEst-OE/EEI/LA0009.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, J., Cardeira, C., Oliveira, P. et al. Design and Validation of an RGB-D Based Localization System - Integration in a Docking System. J Intell Robot Syst 80, 423–440 (2015). https://doi.org/10.1007/s10846-015-0181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0181-7

Keywords

Navigation