Skip to main content
Log in

Design of a Non-Holonomic Spherical Wrist

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The article presents a prototypal design of a spherical parallel machine that can be used for the orientation of parts or devices: the peculiarity of this wrist is that, by exploiting non-holonomic constraints, it is able to bring the end-effector in any 3 d.o.f.’s orientation within its working space by only using 2 actuators. It is shown that, despite the higher complexity of the mechanical design, such architecture features good kinematic performances with respect to similar holonomic machines. Moreover, the use of 4 position sensors allows to obtain just one solution for the direct orientation problem, characterized by simple mathematical expressions. The kinematic performances of the wrist make it a suitable choice for the functional design of machines to be used for static tasks or point to point motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kane, T.R.: Dynamics of nonholonomic systems. ASME J. Appl. Mech. 28, 574–578 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  2. Grifone, J., Mehdi, M.: On the geometry of Lagrangian mechanics with non-holonomic constraints. J. Geom. Phys. 30(3), 187–203 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Choset, H.M.: Principles of Robot Motion: Theory, Algorithms and Implementation. The MIT Press, Cambridge, MA (2005)

    Google Scholar 

  4. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Roton (1994)

    MATH  Google Scholar 

  5. Li, Z., Canny, J.: Nonholonomic motion planning. Kluwer, Boston (1992)

    MATH  Google Scholar 

  6. Ratajczak, A., Tchoń, K.: Parametric and non-parametric Jacobian motion planning for non-holonomic robotic systems. J. Intell. Robot. Sys. 77(3-4), 445–456 (2015)

    Article  Google Scholar 

  7. Shammas, E.A., Choset, H., Rizzi, A.A.: Towards a unified approach to motion planning for dynamic underactuated mechanical systems with non-holonomic constraints. Intl. J. Robot. Res. 26(10), 1075–1124 (2007)

    Article  Google Scholar 

  8. Arimoto, S.: Intelligent control of multi-fingered hands. Ann. Rev. Control 28(1), 75–85 (2004)

    Article  Google Scholar 

  9. Stammers, C.W., Prest, P.H., Mobley, C.G.: The development of a versatile friction drive robot wrist. Proceedings 8th World Congress on the Theory of Machines and Mechanisms, pp. 499–502 (1991)

  10. Stammers, C.W.: Operation of a two-motor robot wrist to achieve three-dimensional manoeuvres with minimum total rotation. Proc. Instit. Mech. Eng., Part C: J. Mech. Eng. Sci. 207(1), 33–39 (1993)

    Article  Google Scholar 

  11. Soørdalen, O.J., Nakamura, Y., Chung, W.J.: Design of a nonholonomic manipulator. Proceedings IEEE International Conference Robotics and Automation, pp. 8–13 (1994)

  12. Peshkin, M., Colgate, J.E., Moore, C.: Passive robots and haptic displays based on nonholonomic elements. Proc. 13th IEEE Intl. Conf. Robot. Autom. 1, 551–556 (1996)

    Article  Google Scholar 

  13. Ben-Horin, P., Thomas, F.: A nonholonomic 3-DOF parallel robot. In: Lenarcic & Wenger (ed.) Advances in Robot Kinematics: Analysis and Design, pp. 111–118. Elsevier (2006)

  14. Grosch, P., Di Gregorio, R., Thomas, F.: Generation of under-actuated parallel robots with non-holonomic joints and kinetostatic analysis of a case study. Proc. ASME Intl. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. 7, 979–986 (2010)

    Google Scholar 

  15. Di Gregorio, R.: Kinematic analysis of the (nS)-2SPU underactuated parallel wrist. ASME J. Mechanisms and Robotics 4(3), n° 031006 (2012)

  16. Battistelli, M., Callegari, M., Di Gregorio, R.: Design and performance analysis of an (nS)-2SPU underactuated wrist. Proceedings ASME/IEEE MESA14, 10th International Conference on Mechatronic and Embedded Systems, pp 1–6 (2014). doi:10.1109/MESA.2014.6935530

  17. Di Gregorio, R., Callegari, M., Battistelli, M.: Real-time algorithm, based on two extra sensors, for monitoring platform’s orientation of an under-actuated parallel wrist. Meccanica (2015). doi:10.1007/s11012-014-0090-z

  18. Zhang, Y., Crane III, C.D., Duffy, J.: Determination of the unique orientation of two bodies connected by a ball-and-socket joint from four measured displacements. J Robot. Syst. 15(5), 299–308 (1998)

    Article  MATH  Google Scholar 

  19. Urízar, M., Petuya, V., Amezua, E., Hernández, A.: Characterizing the configuration space of the 3-SPS-S spatial orientation parallel manipulator. Meccanica 49(5), 1101–1114 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zadarnowska, K., Tchon, K.: A control theory framework for performance evaluation of mobile manipulators. Robotica 25(6), 703–715 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Callegari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callegari, M., Battistelli, M. & Di Gregorio, R. Design of a Non-Holonomic Spherical Wrist. J Intell Robot Syst 81, 181–194 (2016). https://doi.org/10.1007/s10846-015-0243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0243-x

Keywords

Navigation