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Abstract A key challenge for an autonomous mobile 
robot is to estimate its location according to the avail-
able information. A particular aspect of this task is the 
global localization problem. In our previous work, we 
developed an algorithm based on the Differential Evo-
lution method that solves this problem in 2D and 3D 
environments. The robot’s pose is represented by a set 
of possible location estimates weighted by a fitness 
function. The Markov Chain Monte Carlo algorithms 
have been successfully applied to multiple fields such 
as econometrics or computing science. It has been 
demonstrated that they can be combined with the Dif-
ferential Evolution method to solve efficiently many 
optimization problems. In this work, we have com-
bined both approaches to develop a global localization 
filter. The algorithm performance has been tested in 
simulated and real maps. The population requirements 
have been reduced when compared to the previous 
version. 
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1 Introduction 

One of the most important skills of an autonomous 
mobile robot is the capability of estimating its own 
location according to the available information. Two 
different systems can be defined according to the 
information source: positioning systems and self-
localization systems. The positioning systems receive 
signals from external sources (for example, the well-
known GPS). The self-positioning systems rely on 
sensors implemented onboard the robot. This work is 
included in the second option because our robot works 
in indoor environments and it is equipped with a laser 
range finder. 

Depending on the initial knowledge, it is possible 
to distinguish between two different problems: re-
localization or tracking and Global Localization (GL). 
In re-localization, the initial robot’s pose (position and 
orientation) is known, or at least we have information 
that simplifies the localization problem by reducing 
the area to be explored. The localization module tries 
to estimate the current pose as accurately as possi-
ble while the robot is moving around the environment. 
The objective of this problem is to correct the esti-
mate based on proprioceptive sensors (for example, 
odometry provided by the wheel encoders) by using 
local information obtained by perceptive sensors [1] 
(ultrasounds, laser scanners, vision, etc.). In the GL 
problem (also called kidnapping problem), the initial 
pose is unknown or highly uncertain and the search of 
the robot’s true location is not limited to a local area (it 
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is assumed that the global map is known). The robot’s 
pose has to be estimated using local information pro-
vided by perceptive sensors and the odometry is not 
available yet. GL is, from a theoretical point of view, 
more difficult to solve than re-localization. 

In our previous work, we developed an algorithm 
based on the Differential Evolution (DE) method [2] 
that solves the GL problem in 2D [3] and 3D [4] 
environments. These methods are evolutionary opti-
mization techniques that rely on the representation of 
the robot’s pose (position and orientation) by a set 
of possible location estimates (population) weighted 
by a fitness function. This function represents the 
difference between the real observations and the esti-
mated observations from each possible candidate. The 
observation vector is composed of the measurements 
obtained by a laser scanner. The state is recursively 
estimated using a set of results selected according to 
the weight associated to each possible solution. The 
set of solutions evolves in time to integrate the sen-
sor information and the robot motion information. A 
new version that uses the Kullback-Leibler divergence 
to deal with different types of occlusions was recently 
published [5]. 

The basic idea of the Monte Carlo (MC) principle 
is to represent a probability density function by a set 
of samples. This is an old concept that was first formu-
lated by Stan Ulam in 1946. He was playing solitaire 
when he was sick and he thought that, instead of try-
ing to calculate the probabilities of being success, it 
was easier to play the game a significative number of 
times (from a probabilistic point of view), and sum 
the number of cases in which he won. He and Nick 
Metropolis investigated about how to apply this prin-
ciple in computing and published the first document 
about MC simulation in 1949 [6]. 

Many papers about MC simulation appeared in the 
physics literature after that. One of the most inter-
esting versions was developed by Metropolis [7] and 
later generalized by Hastings [8]. They created a large 
class of sampling algorithms that are called Markov 
Chain Monte Carlo (MCMC)[9]. These methods are 
used to generate a number of samples by successive 
jumps that depend on a transition probability. The set 
of samples explore the state space following a Markov 
chain mechanism. The sequence of samples is drawn 
to imitate a target distribution. 

The MCMC algorithms have been successfully 
applied to multiple fields such as econometrics or 

computing science [10]. In [11], Ter Braak has demon-
strated how to combine the MCMC sampling tech-
nique with the DE algorithm. His method has been 
called DE-MC. This new version is able to obtain 
the solution in multiple optimization problems. In this 
work, we have applied these concepts to develop a 
new version of the GL module based on the DE-MC 
method. Several reasons encouraged us to implement 
this method. First, the good behavior shown in [11]. 
Ter Braak reports advantages with respect to the clas-
sic MCMC regarding simplicity, speed of calculation 
and convergence. Second, the possibility of improv-
ing our localization module. Third, to combine the 
statistical robustness of the MCMC technique and the 
exploration properties of the evolutionary filter. 

The new algorithm has been tested in simulated 
and real maps. The experimental results show that 
this new method is an appropriate approach to solve 
the GL problem. We have not found any drawback 
when compared to the previous versions of the fil-
ter. The most important contribution that may be 
inferred from the experiments is that there is a sig-
nificant improvement in the population requirements. 
The optimum number of particles will be measured 
by a parameter that we will define as the success rate. 
The population requirements are much lower than the 
demands of our previous version of the DE-based 
GL filter. 

The results presented here are focused on solving 
the problem with a single laser scan, but our tech-
nique is not limited to this assumption. The method 
also works with motion and multiple laser scans can be 
used to filter the localization results (explained at the 
end of Section 4). We present the results after a single 
perception cycle (the robot does not know its loca-
tion, known map) because the evolutionary search of 
the DE-MC algorithm uses a single observation vector. 
Working with a single laser scan is a strong assump-
tion and the cases where the GL problem can be solved 
with this information are limited by the environment. 
However, the new information can be integrated in 
order to solve the ambiguities when necessary. The 
performance of the evolutionary method with multi-
ple scans from different locations and robot motion 
has been discussed in our previous work [4, 5]. The 
population set keeps the hypotheses and the new infor-
mation eliminates the ambiguities, converging to the 
true pose after receiving more information from the 
new locations. 



The rest of this paper is organized as follows. First, 
Section 2 contains a brief review of related work. 
The main concepts about the algorithms used here 
(MC, MCMC, and DE) are reviewed in Section 3. 
In Section 4, the new version of the GL localiza-
tion module is presented. The experimental results are 
detailed in Section 5 and, finally, the most important 
conclusions are summarized in Section 6. 

2 Related Work 

Different families of algorithms can be used to 
solve the GL problem. In particular, we will distin-
guish between Bayesian-based, optimization-based, 
and hybrid methods. 

The Bayesian-based filters work in two steps. 
Firstly, the available information (motion and percep-
tion) is integrated into the a posteriori density func-
tion. Secondly, the robot’s pose is estimated according 
to a specific criterion such as the maximum density 
point or the average value. The maximum a posteri-
ori (MAP) is an estimator that is frequently used in 
localization to update the robot’s pose in this step. 
The key of these methods is the generation of accu-
rate models for the density function to represent the 
most feasible zones. All the distribution is concen-
trated in a small area after convergence. The particle 
filters are a well-known class of methods that are 
used to solve the integral expressions of the Bayesian 
filter. 

There is a wide group of researchers that work on 
this group of techniques. Some examples are grid-
based probabilistic filters [12, 13] and MC localization 
methods [14–16]. Fox et al. [17] have developed a 
Markov localization module that is applied to dynamic 
environments. The MC version presented by Thrun 
et al. [14] solves the GL and the re-localization prob-
lems. Different variations were proposed after that 
[18, 19]. 

Some interesting approaches take into account the 
observations likelihood function to improve the refine-
ment of the hypotheses. The objective is to reduce 
the particle requirements of the localization filters. 
Biswas et al. [20] have introduced the Corrective Gra-
dient Refinement method. Their technique diminishes 
the population requirements of the particle filter by 
using gradients of the observation model. In [21], the 
authors include the movement of the robot and the 

most recent observation in the proposal distribution. 
The current observation is also included in the pro-
posal distribution in [22]. Zhang et al. [23] have devel-
oped the Self-Adaptive MC localization method. They 
have defined the concept of similar energy region to 
distribute more efficiently the samples. 

The optimization-based methods rely on a fitness 
function that is minimized in each motion-perception 
cycle. The information is integrated to generate a fit-
ness function that can be implemented in different 
ways. This cost function is the key of this group 
of techniques because the estimate will be the ele-
ment with the best fitness value. The most common 
choice is the quadratic cost function. However, differ-
ent options have also been considered in our previous 
work. The Kullback-Leibler divergence is an appro-
priate metric to deal with different types of occlusions 
[5]. The Manhattan distance (L1-norm) is a more suit-
able approach in environments with dynamic obstacles 
[24]. Donoso et al. [25] have used the Hausdorff dis-
tance. Fox et al. [26] have considered the entropy 
of future belief distributions. Arras et al. [27] have 
implemented a feature-based method that relies on the 
Mahalanobis distance. 

Two different approaches can be followed to solve 
the optimization problem. The first option is to use the 
derivative of the cost function to obtain the solution. 
The main advantage of this approach is the com-
putational speed, but it is not possible to deal with 
multi-hypotheses problems. The Kalman filters can be 
included here. They are more frequently used in track-
ing problems (re-localization) because they only need 
to manage one hypothesis. The second group executes 
a stochastic search to find the best solution. Multiple 
classes of algorithms can be included in this approach: 
DE, Genetic Algorithms (GA), Particle Swarm Opti-
mization (PSO), Ant Colony Optimization (ACO), 
etc. An exhaustive review can be found in [28, 29]. 
Vahdat et al. [30] have published a comparison 
between two evolutionary methods (DE and PSO) and 
MC. Lisowski [31, 32] has implemented the DE-based 
MC. A GL filter based on the Harmony Search algo-
rithm [33] has been developed by Mirkhania et al. 
[34]. Ronghua et al. [19] have proposed a genetic 
algorithm optimizer in MC. They exploit the idea of 
coevolution to avoid premature convergence. The DE 
algorithm has been applied in our previous work [3, 
4]. Kwok et al. [35] have utilized three evolutionary 
techniques (GA, PSO, and ACO) to figure out the 



solution of the well-known Simultaneous Localization 
and Mapping problem. 

In the hybrid methods (multi-hypotheses Kalman 
filters) [27, 36-39], the set of solutions is formed 
by normal probability distributions. Nevertheless, the 
creation or elimination of solutions is not purely 
Bayesian. They keep a set of multi-hypotheses with an 
associated Gaussian probability where each distribu-
tion is guided by a Kalman filter. Most of them rely on 
a decision tree search mechanism based on geomet-
ric constraints together with probabilistic attributes 
to manage the global data association problem. In 
[40], the authors use a set of Gaussians to model the 
likelihood function of the robot’s location given the 
information provided by a laser range finder. In [41], 
the authors combine Kalman and particle filters. 

In this paper, the MCMC sampling approach is 
combined with the DE evolutionary algorithm to 
develop a GL module. The literature about this sam-
pling method is explored in the next section. 

3 Fundaments of the Method 

In this section, the methods that will be used to 
develop the GL module are explained. For a more 
detailed explanation, the reader can consult different 
references that will be cited in this section. 

First of all, it is necessary to describe the prob-
lem that will be solved here. The GL problem consists 
of estimating the robot’s pose in a known map con-
sidering the available information which, in this case, 
is a 2D laser reading obtained by a laser scanner. A 
population-based algorithm in which each population 
member is a possible solution (robot’s pose in a known 
map) is applied to solve the cited problem. 

Since the map is a priori known, it is possible to 
obtain a simulated observation vector from each esti-
mate. This vector can be compared to the true obser-
vation from the real location to determine how good 
the estimate is. This comparison is done by imple-
menting a fitness function. The cost value obtained 
by this function can be considered as a probability, 
and the main objective of the GL problem will be to 
find the population member with a highest probability, 
which is basically an optimization problem where the 
objective is to determine the MAP estimate: 

xMA P = arg max />(x;|z), (1) 
x;:;' = 1 Np 

where there are Np population members x,, and the 
observation vector from the true location is z. 

The GL module proposed here to solve the opti-
mization problem combines concepts of MCMC and 
DE. The theory under these algorithms is explained 
below. 

3.1 Monte Carlo Sampling 

Particle filters have been applied with remarkable suc-
cess to many different problems. In robotics, they 
have been widely implemented to solve the localiza-
tion problem. The most common particle filters are 
based in the MC principle, which consists of drawing 
a “i.d.d. set of samples { x ; } ^ from a target density 
p(x) defined on a high-dimensional space X”1 (e.g. 
the space of possible locations in this case). This pop-
ulation set can be used to approximate empirically the 
probability distribution: 

Np 
1 -r-^ 

PNP(x) = > 5 x . (x ) , (2) 
NP '-^ 

i = 1 

where 5x; (x) represents the Dirac delta mass associ-
ated to the candidate x,. In this case, all population 
members have the same probability mass 1/Np. Gen-
erally, PNP(x) -> p(x) when Np -> oo. 

As can be observed, the Np samples can be uti-
lized to obtain the solution of the MAP problem. 
However, in this basic version, the method will suc-
cess only if p(x) has a standard form (Gaussian). 
Andrieu et al. [10] have stated that for more compli-
cated distributions it is necessary to implement more 
sophisticated techniques such as Rejection Sampling 
(RS), Importance Sampling (IS) and Sampling Impor-
tance Resampling (SIR). These options are described 
in the next paragraphs. The probability distribution 
of the problem addressed here depends on the sensor 
measurements and the geometry of the environment. 

The first alternative to the basic MC sampling 
method is called RS. In this technique, the distribution 
p(x) is sampled from another distribution q(x) that 
is easier to sample and satisfies that p(x) ^ Mq(x) 
with M < oo. For example, the known distribution 
q(x) could be a uniform distribution over the space of 
possible solutions and the objective distribution p(x) 

1A useful explanation about how to apply this method to 
machine learning is given in [10]. 



could be based on the cost value of each possible 
solution. 

An accept/reject procedure is implemented in two 
steps. In the first step, two samples are generated: 
x; ~ q(x) and u ~ W(0, 1). In the second step, xr-
is accepted if u < p(xi)/Mq(x{). According to this 
procedure, the set of accepted samples follows the 
distribution p(x) [42]. 

The RS variation presents some limitations. It is 
not always possible to establish an adequate con-
stant M to restrict p(x)/q(x) over the whole space. 
If M is too large, the probability of acceptance is too 
small, which makes this method inefficient in high-
dimensional spaces. In particular, this is an important 
drawback in the localization problem. In planar maps, 
there are three dimensions (position and orientation) 
and the definition of an adequate value for M is not an 
easy task. 

Most MC filters are based on the IS strategy 
[43, 44]. The idea of the IS technique is to define “an 
arbitrary importance proposal distribution q(x) such 
that its support set includes the support set of p(x)” 
[10]. It is possible to use q(x) to generate Np i.i.d. 
samples {x,}-^ and measure the importance w(x,) of 
each population member, which is 

p(x{) 
w(xi) = . (3) 

q(x;) 

The probability density p(x) is now approximated 
by 

N 

PNP(x) = / w(xi)Sxi(x). (4) 
! = 1 

There are different difficulties when approximat-
ing a probability distribution by this method. First, if a 
sample falls in an area with low probability its weight 
is drastically reduced, which implies a great increase 
in the weight of those samples closer to the maximum 
values. This factor can cause a fast degeneration of 
the method. The most classical way of dealing with 
this problem is the SIR strategy [45]. Those particles 
with higher weights are replaced by a set of parti-
cles of equal weights around the original position of 
the higher weights particles, and those particles with 
lower weights are removed from the set. After the 
resampling step all particles have the same weight. 

Second, areas without particles are not evaluated. 
The classical solution to this problem is to increase 

the number of particles, which can result in big sets of 
particles and prohibitive computational costs. 

Third, the method, in each iteration, includes the 
new sensor information obtained to modify the proba-
bilistic weight of each particle in the set. This implies 
that a new iteration is executed whenever there is new 
information. 

On the one hand, these characteristics make the 
MC method based on IS or SIR to be very effective 
in re-localization problems where the area to be sam-
pled is small and, and on the other hand, it can be 
very inefficient in the GL problem because it requires 
a very high number of samples to ensure a proper 
initial density. Besides, it requires a high number 
of observation-motion cycles until convergence. As 
advantages, it should be noted that this method is very 
robust statistically and it supports high levels of noise. 

As it is stated in [10], even with SIR or other 
variations that are not commented here, there are prob-
lems where it is almost impossible to obtain proposal 
distributions that are easy to sample from and good 
approximations of the state space at the same time. 
For this reason, it is necessary to introduce other sam-
pling algorithms based on Markov chains. In the topic 
studied in this paper, the initial information is the map 
of the environment and the laser scan from the robot’s 
location. If the state space is formed by all the possi-
ble poses that can be the solution to the problem, the 
probability cannot be approximated by a known distri-
bution (except in very simple maps). This probability 
is mainly influenced by the sensor measurements and 
the geometry of the environment. 

Besides, if MC-based sampling methods are 
directly applied to the GL problem, the population 
requirements will be huge to cover the whole space 
in the initial stages. The jumping step of the DE-MC 
technique will help the localization process in this 
aspect (see Section 4). 

3.2 Markov Chain Monte Carlo - Metropolis-Hastings 
Method 

An interesting variation of the RS idea has produced 
the MCMC algorithms [9]. MCMC is a sampling 
method where the space is explored using a Markov 
chain mechanism. Each Markov chain is formed after 
generating NP samples that explore the space by 
successive jumps. These jumps are based on a state 
transition probability in such a way that the generated 



sequence of states imitates samples drawn from the 
target distribution p(x). This idea was proposed by 
Metropolis [7] and later refined by Hastings [8]. 

The Metropolis-Hastings algorithm (MH) is the 
most famous MCMC method. It relies on an 
accept/reject approach. In the basic version of the MH 
algorithm, a random value u ~ U(0,1) and a trial sam-
ple xr-* ~ <7(xr-*|xr-) are generated. The trial sample is 
accepted according to an acceptance probability: 

f P(xi*)l(xi|xi*)\ 
u< A(xi, x;*) = min \ 1, } . (5) 

p(xi)q(xiz|xi) 
If the trial sample is accepted the next element of 
the chain is x!+1 = x,*; otherwise, the candidate is 
rejected and x!+1 = xr-. 

To illustrate this method, the practical application 
where this method will be applied is briefly described. 
Instead of having a Markov chain represented by a 
set of particles, the Markov chain will be defined in a 
slightly different way. Each sample will be a possible 
solution of the GL problem (robot’s pose). For each 
population member, a trial sample will be generated 
and the probability value is a variable dependent on 
the cost function that will be calculated for both sam-
ples (TT(x;), 7r(xr-*)). The notation of the acceptance 
probability will be 

f n(xi*)\ 
u< A(xi, x;*) = min {1, \ . (6) 

Jr(x;) 
It can be noticed that the Markov chain will evolve 

to the poses that maximize the cost function. 
The MH algorithm is conceptually simple, but it 

requires a careful choice of the proposal distribution 
qixix|xi). To guarantee that the algorithm converges, 
it is necessary to ensure that there are no cycles (ape-
riodicity) and each state having positive probability 
can be reached in a finite number of steps (irre-
ducibility). The efficiency of the algorithm depends on 
the proposal distribution and suffers from two major 
problems: 
- The local-trap problem in systems whose land-

scape has multiple basins. The samples can be 
trapped in a local minimum. 

- The difficulty to sample from distributions with 
difficult or even intractable integrals. 

At the beginning, the MCMC methods were purely 
sequential, with a single Markov chain. More recently, 

many variants in which different Markov chains are 
run in parallel have been devised. These methods, 
which are called population-based MCMC, reduce 
the local-trap problem of the original version. Each 
Markov chain can follow different distributions. It 
is possible to exchange information between chains, 
learning from past samples and improving the conver-
gence speed. Different algorithms can be included in 
this category: adaptive direction sampling [46], con-
jugate gradient Monte Carlo [47], parallel tempering 
[48, 49], evolutionary Monte Carlo [50], equi-energy 
sampler [51], etc. 

The idea of combining evolutionary algorithms 
with population-based MCMC approaches have been 
explored by different researchers: Ter Braak [11], 
Linage and Wong [50], Liang [52], Laskey and Myers 
[53], etc. Ter Braak has combined MCMC and DE 
to solve many different optimization problems. He 
has concluded that the simplicity, speed of calculation 
and convergence are improved when compared to the 
MCMC method [11]. In this work, the MH version of 
the population-based MCMC algorithm will be com-
bined with the DE evolutionary technique according 
to the method proposed by Ter Braak to design a GL 
module. 

3.3 Differential Evolution Algorithm for GL 

The DE algorithm [2] can be applied to multiple 
optimization problems. The solution adopted in our 
previous work to solve the GL problem is detailed in 
this section. It has been widely explained in our previ-
ous papers [3, 4], reason why only a brief reminder is 
given in this section. In order to do that, the reader can 
see Algorithm 1. 

There is a set of elements that corresponds to pos-
sible solutions and the fitness function represents the 
error between real and estimated data. Three coordi-
nates that define a state space with three Degrees of 
Freedom (DOF) in a 2D map must be estimated to 
determine the robot’s location. 

The exploration starts with a group of NP candi-
dates which are introduced in the localization module 
and evolve with the time to the best solution. Each can-
didate xk

i is a possible solution to the GL problem (the 
robot’s pose, with 3 DOF, at iteration k). The initial 
population will be chosen randomly to cover the whole 
map. The other input parameters are the laser scan 



Algorithm 1 DE-based GL 
1: function DE-GL(realjdist, pop, known jnap, 

conf -parameters) 
2: for i — 1 : Np do 
3: estimatedulist(i)<^dist-est(popJ, 

known jnap) 
4: cost(j.)-<^fitness(estimatedjdist(i), 

realJlist) 
5: end for 
6: while (CONVERGENCE CONDITIONS) do 
7: for i — 1 : iVp do 
8: MUTATI ON 
9: CROSSOV ER 

10: SELECTION 
11: estimatedudist(i)<—distuest(popJ, 

knownjnap) 
12: cost(i)<—fitness(estimated^dist(i), 

realjdist) 
13: > cost function value calculation for 

next generation 
14: end for 
15: [error, indJ?est] <—min(cost) 
16: bestmem <— pop(jndJbest) 
17: convjconditions^checking(...) 
18: end while 
19: end function > return bestmem, error and 

population 

from the true location (real dist), the known map, 
and the configuration parameters of the DE method. 

The population size is a crucial factor in any 
population-based optimization algorithm. An initial-
ization mechanism to estimate this parameter has been 
developed in our previous work [54]. 

For each population member, its associated fitness 
function is calculated (line 2 to 5 of Algorithm 1). The 
true observation vector from the real pose is compared 
to the estimated data from the candidate solution. 

The main loop starts in line 6. If one of the conver-
gence conditions is satisfied, the localization process 
ends successfully. 

Another loop that contains the evolutionary search 
starts in line 7. It consists of the generation of a new 
population for the next generation. In a single iteration 
the algorithm is executed to obtain the next candidates, 
evolving to the correct pose. 

The current population member is perturbed to gen-
erate a mutated vector x* according to the following 
expression: 

x*\ = x* + F (7) 

where xf , xf , and xf are parameter vectors cho-
sen randomly from the population at iteration k and 
are different from the running index. The scale fac-
tor F e (0,1) is a real and constant coefficient that 
controls the amplification of the differential varia-
tions xf It controls the population evolution 
rate. It is usually defined in the interval [0.4, 0.9], 
with an empirical upper limit equal to 1 [2]. Zaharie 
[55] has restricted the lower limit of F. This param-
eter will be fixed to 0.7 in the experiments according 
to the optimum values found in our previous work 
[24]. 

There is an initial population member x^ and the 
perturbation is done with three random variables and 
the constant factor F, generating the new parameter 

k 

vector x; . 
In order to increase the diversity of the new gen-

eration, the crossover is introduced. Denoted by s^ = 
^ ' , 1 ' si,2' ' ' ' ' S i,D the new parameter vector is 

u x _. • if p • < 5 

''J xf i otherwise, 
'•I J 

(8) 

where pf is a randomly chosen value from the inter-
val [0,1] for each parameter j of the population 
member i at step k, and 5 is the crossover probabil-
ity and constitutes the crossover control variable. xf^ 
and xf are each one of the parameters of the mutated 
and the current population vectors, respectively. D is 
usually defined as the number of chromosomes, which 
is three in this case. The random values pf are made 

'-i J 

anew for each trial vector i. 
The new population candidate s^ is compared to x^ 

to choose the member of the next generation i + 1. If 
the vector s^ yields a better value for the fitness func-
tion than xf, then it is replaced by s-+ ; otherwise, the 
old value x^ is retained for the new generation. The 
general ideas of the previous mechanism (mutation, 
crossover, and selection) are well known and can be 
found in literature [56]. 

T 
k 



Finally, the algorithm returns the best population 
member according to the fitness function, which is the 
solution of the GL problem. 

However, this is the basic version of the DE-based 
GL module. This algorithm will be used here in a dif-
ferent way. The new version that combines MCMC 
and DE will be introduced in the next section. The 
idea is to exploit the utility of the RS concept of the 
MH approach combined with the evolutionary-based 
method. 

4 Differential Evolution Markov Chain GL Filter 

A GL filter based both on MCMC and DE has been 
proposed in this paper. The main idea is to implement 
the same concepts that applied Ter Braak [11] to con-
vert the Np particles of the DE algorithm into Np 
Markov chains, exploiting the statistical robustness 
of the MCMC sampling method and the exploration 
properties of the evolutionary algorithm. He pro-
posed a simple modification to combine the MCMC 
approach with the DE optimizer. This algorithm has 
been applied here to solve the GL problem. It is 
detailed in pseudocode in Algorithm 2. 

Each population member evolves as a Markov 
chain where new potential samples are generated in 
each iteration. In the first iteration, the whole popula-
tion is generated to cover uniformly the free map (lines 
2-4 of Algorithm 2). 

The DE-MC method uses the mutation step of the 
DE algorithm to generate the new potential samples. 
The new candidates are accepted or rejected accord-
ing to a selection mechanism. This combined scheme 
takes advantage of the exploratory efficiency of the 
DE method to run the exploration jumps and the sta-
tistical efficiency of the MC RS strategy via the usual 
Metropolis ratio, which defines the probability with 
which a new proposal is accepted. 

The use of the DE approach in the jumping step of 
the MCMC sampling algorithm solves an important 
difficulty in MCMC in real parameter spaces, which is 
the selection of a suitable scale and orientation for the 
jumping distribution. This problem is only solved in 
orientation but not in scale when using other adaptive 
direction sampling methods. 

In the default option of the DE method 
(Section 3.3), the new proposals are generated from 
three random vectors according to Eq. 7. Once a new 

Algorithm 2 DE-MC GL module 
1: function DE-MCJJL{realjdist, knownjnap, 

conf -parameters) 
2: for i = 1 : Np do > Initialization of Np 

Markov chains 
3: x9 = uniform(freejnap) 
4: end for 
5: 7 = 1 
6: while (CONVERGENCE CONDITIONS) do 
7: for i = 1 : Np do 

= x/ + F \ x n xr2J + e 
> Mutation 

x{-rlog — fitness (x^ I — fitness (x^ 1 
u ~ W(o, i) 
if rlog < log u then > Selection, next 

sample of each chain 
xj = x^ 

else 
xf — xj 

end if 
end for 

8: 

9: 
10: 
11: 

12: 
13: 
14: 
15: 
16: 
17: j <— j: + 1 > Next iteration index 
18: optimum location — xj : min{jr(x'')} 
19: conv ̂ conditions .checking^...) 
20: end while 
21: end function > Return solution 

set of proposals are obtained, a crossover mechanism 
is used to mix the new candidates with the old ones. 
The crossed and mutated vector (s*) is retained for 
the next generation if its fitness value is better than 
the fitness value of the current population member 
TC (x*). In other words, the proposal is accepted if 
r = TC (s*) /TC (x*) > 1, and the whole population 
evolves to the best candidates optimizing the fitness 
function. Although Ter Braak proposes a variant 
with crossover that could be useful in some cases, 
this option has not been included in our method to 
keep the procedure closer to the basic concept of a 
population-based MCMC algorithm. 

To make a proper conversion from the DE mech-
anism to a population-based MCMC algorithm for 
drawing samples from the target distribution, differ-
ent researchers have concluded that the generation of 
new samples and their acceptance condition must be 
chosen to satisfy the “balance condition” [42, 57, 58]. 
This basically means that if a sample xj is drawn from 



the target distribution, then the next sample xj
i
 + 1 must 

be drawn from the same target distribution, possibly 
dependent on xj

i . This condition cannot be met when 
the strategy shown in Eq. 7 is followed. 

There are multiple options that can be chosen to 
generate new samples. According to the work of Ter 
Braak, a more promising option has been chosen to 
generate the new samples: 

xj + F + e, 7V(0, b) , (9) 

where e is a symmetric normal distribution in a d-
dimensional space that is added to guarantee that the 
whole parameter space is covered. b is small when 
compared to the variance of the target. Note that we 
use j instead of k to distinguish between the iterations 
in the new method (Markov chains) and the iterations 
in the old version. This strategy is adopted to generate 
the Np new candidates (line 8). 

Figure 1 shows the mutation options described in 
Eqs. 7 and 9. A simple simulated indoor map with 
sampled particles at random places is drawn. Each 
subfigure represents one of the proposed techniques. 

The key idea of the procedure proposed by Ter 
Braak is to include a probabilistic acceptance rule 
in the evolutionary method. Instead of using a fixed 
ratio, the proposal generated in Eq. 9 is accepted with 

f i \ i i \ probability min(1, r), where r = n I x̂  I /n I xj . 
This acceptance mechanism has to be defined in a 

different way taking into account the properties of the 
fitness function. According to the available informa-
tion, it is not possible to measure direct probabilities 
in this type of method. Therefore, an important aspect 
to explain is the cost function implemented in the opti-
mization filter. This is a crucial factor because the 
evolutionary search of the Markov chains is guided 

by this parameter. It has been widely studied in our 
previous work [4, 5]. A common choice for this func-
tion when it is assumed that the sensor errors are 
Gaussian-distributed is the sum of the squared errors. 

If the observation vector from the true location is 
z = (z1,..., ZNS)T (N$ being the number of laser 
beams or observations), the estimated observations 
from the population member x, in the known map are 
zi = (z1,;,..., ZNSJ)T, and the observation error vari-
ance is <jg, the fitness function to be minimized could 
be given by the following expression: 

Ns 
fitness(xi) 

£=0 

(Zk — Zk,i)2 

+ 2 (xi — X)P (X; — X) (10) 

where x̂  represents the best estimate among all mem-
bers of the population. The second term of the previ-
ous expression is useful when the robot is moving [4]. 
Since the GL problem in a single perception cycle (no 
motion) is considered here, the cost function can be 
simplified: 

Ns 
fitness(xi) 

k=0 

(Zk — Zk,i)2 

2^ 2 ' (11) 

This is the final expression of the fitness function 
implemented in the GL filter. It measures the differ-
ence between the simulated laser scan estimated from 
a population member in the known map and the obser-
vations from from the true location. It can be observed 
that, if the sensor noise is modeled as a Gaussian in 
each laser beam, the cost function in the optimum case 
will be a sum of Gaussians with zero mean, thus the 
fitness value has to be minimized (the objective is to 
maximize the probability in the DE-MCMC original 
notation). 

Fig. 1 Different mutation strategies in DE. Left: Mutation strategy of Eq. 7. Middle: Mutation strategy of Eq. 9 (F = 1). Right: 
Mutation strategy of Eq. 9 (F = 0.7). Orientation of the particles and noise e of the mutated values not drawn for simplicity 

e 



The acceptance mechanism has been modified here 
by taking logarithms (lines 9 — 15). After making 
experiments with different ratios (the simplest one was 
using the inverse of the fitness value in the original 
expression), an empirical method based on the differ-
ence between the fitness value of the proposal and the 
current member is proposed: 

ri0g = fitness xj — fitness (12) 

The logarithm of the random number u ~ W(0,1) is 
used to define an acceptance criterion. The new mem-
ber is accepted if riog < log u; otherwise, it is rejected. 
logw is in the interval (—oo, 0) and riog is negative 
when the fitness value is improved. The new candidate 
is accepted with a probability that depends on the ran-
dom number u if the fitness value is improved. This 
idea has been taken from an example shown in [11], 
where logarithms are used to modify the acceptance 
probability. The probability of acceptance depending 
on the improvement of the fitness value is tabulated 
in Table 1. As can be noticed, if there is a signifi-
cant improvement, the new candidate is almost always 
accepted. 

Analyzing the selection mechanism, several dif-
ferences are found when compared with the original 
method proposed by Ter Braak. His method always 
accepts the proposal if the probability is improved. In 
this filter, the new candidate is accepted with a prob-
ability that is increased with the difference between 
fitness values. In other words, the new candidate is 
only accepted if there is a significant improvement 
and small improvements that can be caused by the 
noise are filtered, which reduces the optimization in 
the noise band. This interesting property was also 
wanted in our previous work [4]. Ter Braak can accept 
a new candidate even if it holds a lower probability. 
In our method, it is not possible to accept the pro-
posal if the fitness function is not improved. Though 
this mechanism has been empirically fixed, this 

capabilities are more adequate for a GL filter accord-
ing to our experience in this problem, fact that will 
be shown in the experimental results section. Dif-
ferent options could be defined to meet different 
requirements. 

This procedure of generating new candidates and 
accepting them according to a probability ratio is 
repeated for the whole population in each iteration. 
The Np population members or Markov chains evolve 
to the locations with the best fitness values. This loop 
is repeated until the convergence conditions are sat-
isfied (line 19), returning the best member of the 
population (line 18), which is also the solution of the 
GL problem. As can be noticed, one of the advantages 
of this filter is that it is even simpler to implement than 
the basic version of the DE algorithm. 

The practical situation in the GL problem is that 
it is almost impossible to determine the target dis-
tribution. The distribution of the cost function from 
the possible locations (position and orientation) in 
the whole map does not follow any known distribu-
tion at all. However, it will be demonstrated that the 
solution adopted in this paper works in an efficient 
way. 

The best estimate is saved as the robot location 
after convergence. If the robot moves to another loca-
tion (although motion is not considered here, the 
algorithm is not limited to this assumption), the pop-
ulation set is moved according to the robot motion 
model x '+1 = f(xl, ul), where t represents the time 
instant when the robot receives information from its 
sensors (odometry information u' and laser readings 
if). The problem is now converted into the tracking 
one. The algorithm is executed when the robot is sit-
uated in the new location, but instead of having a 
random population at the beginning, the initial popu-
lation is formed by the results of the last execution of 
the algorithm. In other words, the population that is 
obtained after the execution of the localization filter 
is moved according to the odometry, and this popu-
lation will be the initial population set for the new 
location. 

Table 1 Probability of acceptance depending on the fitness value improvement 

Fitness improvement (rlog) 

p(acceptance) (%) 

0.10 

10 

0.35 

30 

0.69 

50 

1.20 

70 

1.60 

80 

2.39 

90 

6.90 

99.99 

J 
X 



Fig. 2 GL in an 
architectural plan (DLR). 
All units in cells. Laser 
readings in purple. Robot’s 
location in blue. Points of 
study marked with dots and 
orientation with arrows 

5 Experiments DE configuration parameters: F = 0.7, 5 = 0.5. 

Different experiments with simulated and real maps 
obtained from the OpenSLAM repository2 have been 
carried out to check de performance of the GL filter. 

It is interesting to remark different aspects that will 
be measured: 

– GL ability without motion (perceptual differentia-
tion capacity, static). The robot is standing still at 
a given location and the objective is to estimate its 
position in a single perception cycle, i. e., using a 
single laser scan from the true location. 

– Ability to handle multiple hypotheses. In indoor 
environments such as office buildings it is very 
common to find similar places that are very diffi-
cult to differentiate because the perceptive infor-
mation from both of them is almost the same. The 
ability to keep a sufficient number of hypothe-
ses until it is possible to eliminate the ambiguity 
between them is an interesting property. 

The algorithm performance has been studied in an 
architectural plan (Section 5.1) and in a real map 
(Section 5.2). After that, the results are analyzed in 
Section 5.3, including a detailed comparison with 
respect to the previous version of the DE-based GL 
filter. The most important conclusions are deduced in 
this section. 

5.1 Architectural Plan 

Figure 2 shows the map provided by the DLR3 that 
will be used in this section. A cell size equal to 10 cm 
will be assumed. It is a medium-large size map (about 
650 × 800 = 520000 cells = 5200 m2) with a high 
degree of repeatability, which means that it contains 
many similar places (for example, offices with almost 
the same appearance). 

Three points of interest (locations in the environ-
ment, denoted by pai) have been chosen: 

1. pa1 = (300, 50 , 90). The robot is located in an 
office, and there are many offices with similar 
dimensions. 

2. pa2 = (150, 105,0). This place is a corridor. 
3. pa3 = (550, 400,0). This place is a hall. 

According to the map of Fig. 2, the first coordinate 
corresponds to the horizontal axis, the second one is 
the vertical axis and the third one represents the orien-
tation (zero being pointing right, horizontal direction, 
increasing clockwise). These locations have been cho-
sen because they represent characteristic places of the 
environment (hall, corridor, and office). More results 
from random places are given at the end of this 
section. 

2 www.openslam.org 
3Thanks to Christoph Hertzberg for making available this data 
set. 

http://www.openslam.org


The sensor noise has been modeled as a Gaussian 
distribution over the laser distance where the stan-
dard deviation is the parameter that must be fixed to 
specify the noise. This noise is added to the distances 
observed from the true location. It has to be noticed 
that the noise will be typically worse than the noise of 
the commercial devices. 

The “success rate” (Sr in the tables) is an inter-
esting variable that has been defined to measure the 
algorithm robustness. For a specific location, two dif-
ferent results can be reached when estimating the 
robot’s pose: the estimate matches the real pose (suc-
cess) or the estimate and the true pose do not coincide 
(failure). Sr can be measured if the algorithm is run 
multiple times for the same location. The success rate 
is a statistical variable that is equal to the number of 
runs in which the estimate matches the real pose (it 
means that the correct pose is estimated in one per-
ception cycle) divided by the total number of trials. 
The result of this division has to be multiplied by 100 
because Sr is given in %. Since the true pose is known, 
it is possible to define a distance threshold to measure 
the success rate, which is 50 cm in these experiments. 
For example, Sr = 100 means that if the algorithm is 
run 50 times the correct pose is obtained in all cases. 

The influence of the population size is measured in 
Table 2 for the first location (p«1). The position errors 
(ex, ey) are the distances between the estimated val-
ues and the real positions of the robot, in cartesian 
coordinates. The orientation error (eg) is the difference 
between the estimated orientation and the real one. 

Table 2 Error and success rate depending on the population size 

Np 

40 
60 
80 
100 
120 
140 
160 
180 
200 
220 

Sr 

54 
70 
80 
92 
96 
98 
98 
100 
100 
100 

ex(cells) 

0.0181 ± 0.0191 
0.0218 ± 0.0306 
0.0249 ± 0.0326 
0.0206 ± 0.0339 
0.0169 ± 0.0320 
0.0235 ± 0.0361 
0.0147 ± 0.0268 
0.0241 ± 0.0343 
0.0213 ± 0.0346 
0.0170 ± 0.0301 

NP has to be large enough to be successful in most 
cases, but higher values have a negative effect on 
the computational cost. The success rate reaches the 
100 % when the population size is 180. Therefore, this 
size will be adequate in this case. 

The estimation of an adequate population size will 
depend on several factors. The first one is the size of 
the area perceived by the mobile robot. The required 
size will be lower for larger areas. This conclusion 
is completely logical because, in general, the basin 
of attraction of the local minimum will be larger 
for larger areas. Therefore, it will be easier to con-
verge to the optimum value. The map size is also a 
key factor because the number of elements has to be 
increased for larger maps. There are other factors such 
as the number of symmetries, the sensors information, 
and the occlusions that also have an influence on 
this aspect. An interesting study about the population 
requirements is included in our previous work [54]. 

The algorithm performance depending on the noise 
level has been measured for the same point of inter-
est. The results are presented in Table 3. It can be 
observed that the accuracy decreases when the sen-
sor noise increases. Although the error is increased, 
the algorithm converges in almost all cases to the cor-
rect pose up to 7.5 % of noise. When the sensor noise 
is 10 %, the algorithm does not converge to a single 
pose, requiring additional motion and a new laser scan 
to solve the GL problem. 

The same tests have been conducted for the other 
points of interest. The results for pa2 are detailed in 

ey(cells) 

0.0677 ± 0.0842 
0.0530 ± 0.0398 
0.0554 ± 0.0632 
0.0586 ± 0.0729 
0.0490 ± 0.0679 
0.0474 ± 0.0613 
0.0660 ± 0.0976 
0.0433 ± 0.0729 
0.0597 ± 0.0864 
0.0700 ± 0.1093 

eθ(degrees) 

0.0655 ± 0.0609 
0.0495 ± 0.0633 
0.0647 ± 0.0765 
0.0710 ± 0.0812 
0.0640 ± 0.0593 
0.0723 ± 0.0777 
0.0598 ± 0.0612 
0.0743 ± 0.0722 
0.0650 ± 0.0704 
0.0680 ± 0.0715 

Simulated map. True location: (300, 50 , 90). Sensor noise: standard deviation of 1%. Sr in %. Errors in mean ± standard deviation 



Table 3 Error and success rate depending on the sensor noise level 

Sensor noise sr 
ex(cells) ey(cells) eθ (degrees) 

0.5 
1.0 
2.5 
5.0 
7.5 
10.0 

100 
100 
98 
98 
96 
74 

0.0074 ± 0.0128 
0.0213 ± 0.0346 
0.0925 ± 0.1038 
0.2355 ± 0.2553 
0.2797 ± 0.2824 
0.5315 ± 0.3790 

0.0235 ± 0.0295 
0.0597 ± 0.0864 
0.1837 ± 0.1876 
0.5007 ± 0.3931 
0.8544 ± 0.7115 
1.1011 ± 0.7711 

0.0332 ± 0.0333 
0.0650 ± 0.0704 
0.1992 ± 0.2070 
0.3604 ± 0.3759 
0.6011 ± 0.5831 
1.0305 ± 0.7043 

Simulated map. True location: (300,50, 90). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation. 
NP = 200 

Ta b l e s 4 and 5. In this case, the success rate is opti-
mum when the population size is 50. The algorithm 
converges in almost all cases to the correct pose up to 
2.5 % of sensor noise. The deterioration of the results 
is significant with a 10 % of noise. 

Ta b l e s 6 and 7 show the results for pa3. An opti-
mum population size is 60 or more in this case. The 
success rate is less influenced by the noise when the 
robot is located at this place. The success rate is still 
100 % even with a 7.5 % of sensor noise. 

In order to obtain a more illustrative comparison 
between points of interest, the influence of the sensor 
noise and the population size on the position error can 
be observed in Fig. 3. In the left part of the figure, 
the position error is drawn depending on the sensor 
noise. In the right part of the figure, the same error 
is plotted against the population size. The reader has 
to notice that this figure shows the same results pre-
sented in the previous tables (regarding the position 
errors) in a graphic format. It can be easily deduced 
that the position error grows linearly with the sensor 
noise. Regarding the population size, the position error 

does not depend on this variable. The error stays in the 
same range when the population size is changed. 

Because the sensor noise is proportional to the dis-
tances measured by the laser scanner, larger errors are 
expected in larger areas where the closest obstacles are 
far away from the robot. The worst errors are obtained 
when the robot is in pa3. It can be seen that this point 
corresponds to the largest area. In smaller zones, such 
as pa1 and pa2, the localization error is smaller. 

For a fixed noise (Tables 2, 4 and 6), the errors 
are in the interval [2.57, 27.13] mm in position and 
[0.03, 0.11] degrees in orientation. These errors are 
slightly lower than those obtained in our previous 
work [5, 24], and they are low enough to conclude that 
the GL problem is efficiently solved. 

More results from different random places are 
given in Table 8. For simplicity, only the errors with 
1 % noise and optimum population size (lowest NP 

with maximum Sr ) are given. As can be observed, the 
method performance is similar for these new places. 
The errors are within the same interval and the success 
rates present optimum values. 

Table 4 Error and success rate depending on the population size 

Np 

20 
30 
40 
50 
60 
70 
80 

Sr 

56 
80 
94 
100 
100 
100 
100 

ex(cells) 

0.0712 ± 0.1093 
0.0626 ± 0.0901 
0.0624 ± 0.0917 
0.0601 ± 0.0512 
0.0547 ± 0.0605 
0.0403 ± 0.0364 
0.0400 ± 0.0358 

ey(cells) 

0.0126 ± 0.0126 
0.0151 ± 0.0099 
0.0115 ± 0.0131 
0.0128 ± 0.0122 
0.0140 ± 0.0155 
0.0099 ± 0.0069 
0.0099 ± 0.0079 

eθ (degrees) 

0.0340 ± 0.0372 
0.0414 ± 0.0319 
0.0399 ± 0.0390 
0.0338 ± 0.0311 
0.0424 ± 0.0422 
0.0290 ± 0.0281 
0.0327 ± 0.0320 

Simulated map. True location: (150, 105 , 0). Sensor noise: standard deviation of 1 %. Sr in %. Errors in mean ± standard deviation 



Table 5 Error and success rate depending on the sensor noise level 

Sensor noise sr 
ex(cells) ey(cells) eθ(degrees) 

0.5 

1.0 

2.5 

5.0 

7.5 

10.0 

100 

100 

98 

80 

80 

68 

0.0233 ± 0.0216 

0.0400 ± 0.0358 

0.1886 ± 0.2262 

0.4573 ± 0.3482 

0.6351 ± 0.3687 

0.8161 ± 0.4292 

0.0067 ± 0.0037 

0.0099 ± 0.0079 

0.0312 ± 0.0259 

0.0780 ± 0.0798 

0.0922 ± 0.0853 

0.1581 ± 0.1912 

0.0130 ± 0.0132 

0.0327 ± 0.0320 

0.1084 ± 0.0851 

0.1850 ± 0.1595 

0.1920 ± 0.2016 

0.3522 ± 0.2479 

Simulated map. True location: (150, 105 , 0). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation. 
NP = 80 

Table 6 Error and success rate depending on the population size 

Np Sr ex(cells) ey(cells) eθ(degrees) 

20 

30 

40 

50 

60 

70 

80 

90 

100 

80 

94 

98 

98 

100 

100 

100 

100 

100 

0.2312 ± 0.1835 

0.2586 ± 0.2533 

0.2244 ± 0.2462 

0.2400 ± 0.2632 

0.2229 ± 0.2242 

0.2551 ± 0.2547 

0.2600 ± 0.2342 

0.2244 ± 0.1514 

0.2523 ± 0.2444 

0.0800 ± 0.0519 

0.0819 ± 0.0611 

0.0731 ± 0.0496 

0.0870 ± 0.0541 

0.0743 ± 0.0519 

0.0906 ± 0.0554 

0.0993 ± 0.0683 

0.0798 ± 0.0698 

0.0855 ± 0.0718 

0.1012 ± 0.0791 

0.1200 ± 0.0815 

0.1013 ± 0.0681 

0.0993 ± 0.0666 

0.0959 ± 0.0600 

0.0896 ± 0.0715 

0.1149 ± 0.1028 

0.1163 ± 0.0859 

0.0988 ± 0.0827 

Simulated map. True location: (550, 400 , 0). Sensor noise: standard deviation of 1%. Sr in %. Errors in mean ± standard deviation 

Table 7 Error and success rate depending on the sensor noise level 

Sensor noise Sr ex(cells) ey(cells) eθ(degrees) 

0.5 

1.0 

2.5 

5.0 

7.5 

10.0 

100 

100 

100 

100 

100 

90 

0.0543 ± 0.0628 

0.2244 ± 0.1514 

0.5695 ± 0.3788 

0.8449 ± 0.7479 

1.4733 ± 0.9826 

1.9609 ± 1.4879 

0.0439 ± 0.0387 

0.0798 ± 0.0698 

0.1521 ± 0.1216 

0.3469 ± 0.2947 

0.7037 ± 0.4973 

0.8846 ± 0.6723 

0.0504 ± 0.0463 

0.1163 ± 0.0859 

0.2391 ± 0.1756 

0.4425 ± 0.3888 

0.7951 ± 0.6600 

1.0414 ± 0.8635 

Simulated map. True location: (550, 400 , 0). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation. 
NP = 90 



Fig. 3 Left: position error vs. sensor noise. Right: position error vs. population size. Simulated map. Sensor noise in standard deviation 
(%). Robot’s poses between brackets 

5.2 Learned Map 

Similar experiments have been conducted in the real 
map of Fig. 4 to test the algorithm performance in this 
type of environments4. The area covered by this map 
is 29 × 29 m2, thus it has been assumed that the cell 
size is 5 cm. This is a medium-size map with highly 
cluttered areas (Fig. 5). In general, this map is very 
similar to the architectural plan in corridors and halls, 
but it is completely different in offices because there 
are many obstacles. 

In this case, the points of interest will be: 

1. pr1 = (100, 450, 45). This place is a hallway. 
2. pr2 = (470, 425, 37). The robot is located in an 

office. It is a cluttered area with many obstacles. 
3. pr3 = (550, 400, 0). This place is an office and 

there are many offices with similar dimensions 
and furniture. Less cluttered than pr2. 

The influence of the population size is measured in 
Ta b l e 9 for the first location. This place corresponds 
to a hallway. Since the area that can be measured by 
the sensors is large and there are no similar places, 
this place will be one of the easiest in this map. The 
success rate reaches the 100 % when the population 
size is 160. Therefore, this size will be adequate in this 
case. 

The effect of the noise level when the robot is sit-
uated in pr1 has been measured in Table 10. As in 
the previous cases in the simulated map, the accuracy 

4Thanks to Dieter Fox for making available this map. 

decreases when the sensor noise increases. The algo-
rithm converges in all cases to the correct pose up to 
2.5 % of noise. The success rate shows high values 
even with a 10 % of noise. 

Ta b l e s 11 and 12 show the results for pr2. The robot 
is inside a cluttered room in this case (Fig. 5). The 
basin of attraction of the local minimum is smaller, 
which means that small changes in position or orien-
tation cause very different values in the cost function. 
The success rate reaches the maximum value (96 %) 
when the population size is 600. The GL method does 
not succeed in some cases because it is a very chal-
lenging location. However, the success rate presents a 
promising value, as will be demonstrated in the next 
section when comparing to the previous version of the 
filter. The algorithm converges in almost all cases to 
the correct pose when the sensor noise is 1 %. The 
deterioration of the results is significant with a 5 % of 
noise. 

Ta b l e s 13 and 14 display the results when the robot 
is located at pr3. This place is an office and there are 
many offices with similar dimensions and furniture, 
but it is less cluttered than pr1. The size that is required 
is 480 in this case. The success rate is less influenced 
by the noise when compared to pr2. The success rate 
is optimum even with a 5 % of sensor noise. As in 
the previous location, the localization process fails in 
some cases. 

The comparison between all locations according to 
the sensor noise and the population size can be seen 
in Fig. 6. Like in the architectural plans, the position 
error grows linearly with the sensor noise and it does 
not depend on the population size. 



Table 8 Error and success rate for different random places 

Location 

(802,123,23) 

(252,516,167) 

(688,470,271) 

(561,150,100) 

(551,498,43) 

(300,172,255) 

Np 

100 

120 

140 

80 

80 

100 

Sr 

100 

98 

98 

100 

98 

100 

ex(cells) 

0.0516 ± 0.0622 

0.1018 ± 0.0929 

0.0359 ± 0.0232 

0.0411 ± 0.0336 

0.0773 ± 0.0661 

0.0241 ± 0.0304 

ey(cells) 

0.0354 ± 0.0393 

0.0333 ± 0.0470 

0.0163 ± 0.0101 

0.0687 ± 0.0492 

0.0573 ± 0.0680 

0.1511 ± 0.1063 

eθ(degrees) 

0.0434 ± 0.0502 

0.0522 ± 0.0478 

0.0458 ± 0.0374 

0.1358 ± 0.1171 

0.1022 ± 0.0698 

0.0562 ± 0.0852 

Simulated map. Sensor noise: standard deviation of 1%. Sr in %. NP is the lowest that optains the maximum Sr. Errors in mean ± 
standard deviation 

The worst errors are obtained for pr1 (larger sens-
ing area). For a fixed noise (Tables 9, 11 and 13), the 
errors are in the interval [0.27, 3.17] mm in position 
and [0.01, 0.05] degrees in orientation. These errors 
are slightly lower than the errors in the simulated map. 

The main reason is that the map resolution is higher in 
this section. 

In general, the population size should be larger and 
the success rate is more influenced by the sensor noise 
in learned maps. 

Fig. 4 GL in an learned 
map (Intel lab). All units in 
cells. Laser readings in 
purple. Robot’s location in 
blue. Points of study 
marked with dots and 
orientation with arrows 



Fig. 5 Map details in a cluttered area. Zoom of the region of 
interest in the learned map of Fig. 4. All units in cells. Laser 
readings in purple. Robot’s location in blue 

More results from different random places are 
given in Table 15. For simplicity, only the errors 
with 1 % noise and optimum population size (low-
est NP with maximum Sr) are given. The method 
performance is similar for these new places. 

5.3 Results analysis - Comparison with Previous 
Version 

The real benefits of the new method can be appreci-
ated if it is compared to the previous version of the GL 
filter. To do that, we will use the results obtained in 
the previous sections. 

For the simulated map, the localization errors and 
the success rates computed for the points of interest 
with a 1 % noise and the optimum number of particles 
(Tables 3, 5, and 7) are rewritten in the top rows of 
Ta b l e 16 (DE-MC in the table). ed is the position error 
and iter represents the average number of iterations 
that are needed to converge. The same measurements 
are calculated using the traditional version of the DE-
based GL algorithm detailed in Section 3.3 (DE in the 
table). For each location, the number of particles is 
increased until the maximum success rate is reached. 

If the traditional version is run with the same popu-
lation size (first row for each location, NP equal to the 
population size used for the new version), the success 
rate is much lower in all cases. It means that the old 
version is less robust and the population size must be 
increased to obtain an optimum performance. There-
fore, the population size required by the new technique 
is much lower than the population size that is needed 
by the previous version. In particular, for pa1, pa2, 
and pa3, the population size has to be multiplied by 

Table 9 Error and success rate depending on the population size 

Np 

40 

60 

80 

100 

120 

140 

160 

180 

Sr 

72 

76 

88 
94 

94 

98 

100 

100 

ex(cells) 

0.0337 ± 0.0313 

0.0312 ± 0.0347 

0.0483 ± 0.0413 

0.0496 ± 0.0554 

0.0346 ± 0.0417 

0.0329 ± 0.0411 

0.0394 ± 0.0429 

0.0423 ± 0.0544 

ey(cells) 

0.0389 ± 0.0409 

0.0423 ± 0.0335 

0.0411 ± 0.0391 

0.0312 ± 0.0285 

0.0357 ± 0.0262 

0.0413 ± 0.0499 

0.0324 ± 0.0328 

0.0260 ± 0.0220 

eθ (degrees) 

0.0461 ± 0.0632 

0.0426 ± 0.0445 

0.0522 ± 0.0589 

0.0409 ± 0.0422 

0.0545 ± 0.0505 

0.0506 ± 0.0659 

0.0382 ± 0.0347 

0.0306 ± 0.0271 

Real map. True location: (100, 450 , 45). Sensor noise: standard deviation of 1 %. Sr in percentage. Errors in mean ± standard deviation 



Table 10 Error and success rate depending on the sensor noise level 

Sensor noise sr 
ex(cells) ey(cells) eθ(degrees) 

0.5 
1.0 
2.5 
5.0 
7.5 
10.0 

100 
100 
100 
92 
92 
90 

0.0173 ± 0.0132 
0.0423 ± 0.0544 
0.0922 ± 0.1195 
0.2060 ± 0.2317 
0.3094 ± 0.2248 
0.4866 ± 0.3660 

0.0210 ± 0.0193 
0.0260 ± 0.0220 
0.0615 ± 0.0599 
0.2182 ± 0.1857 
0.2127 ± 0.2100 
0.3752 ± 0.3556 

0.0270 ± 0.0332 
0.0306 ± 0.0271 
0.1012 ± 0.1001 
0.2216 ± 0.1939 
0.2801 ± 0.2320 
0.3504 ± 0.2630 

Real map. True location: (100, 450 , 45). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation. NP = 180 

Table 11 Error and success rate depending on the population size 

Np Sr ex(cells) ey(cells) eθ(degrees) 

100 
200 
300 
400 
500 
600 

32 
62 
66 
82 
94 
96 

0.0084 ± 0.0056 
0.0157 ± 0.0233 
0.0085 ± 0.0061 
0.0214 ± 0.0771 
0.0266 ± 0.0206 
0.0100 ± 0.0082 

0.0095 ± 0.0065 
0.0140 ± 0.0193 
0.0079 ± 0.0065 
0.0145 ± 0.0147 
0.0121 ± 0.0076 
0.0053 ± 0.0046 

0.0152 ± 0.0116 
0.0231 ± 0.0275 
0.0140 ± 0.0102 
0.0407 ± 0.0615 
0.0039 ± 0.0027 
0.0084 ± 0.0068 

Real map. True location: (470, 425 , 37). Sensor noise: standard deviation of 1%. Sr in percentage. Errors in mean ± standard deviation 

Table 12 Error and success rate depending on the sensor noise level 

Sensor noise Sr ex(cells) ey(cells) eθ(degrees) 

0.5 
1.0 
2.5 
5.0 
7.5 
10.0 

100 
96 
76 
62 
56 
44 

0.0122 ± 0.0099 
0.0100 ± 0.0082 
0.0110 ± 0.0068 
0.0166 ± 0.0136 
0.0170 ± 0.0148 
0.0528 ± 0.1022 

0.0059 ± 0.0049 
0.0053 ± 0.0046 
0.0121 ± 0.0069 
0.0156 ± 0.0118 
0.0303 ± 0.0320 
0.0495 ± 0.0629 

0.0101 ± 0.0063 
0.0084 ± 0.0068 
0.0200 ± 0.0137 
0.0236 ± 0.0148 
0.0275 ± 0.0160 
0.0505 ± 0.0745 

Real map. True location: (470, 425 , 37). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation. NP = 600 

Table 13 Error and success rate depending on the population size 

Np Sr ex(cells) ey(cells) eθ(degrees) 

80 
160 
240 
320 
400 
480 
560 

36 
72 
78 
84 
92 
96 
96 

0.0118 ± 0.0058 
0.0110 ± 0.0065 
0.0127 ± 0.0061 
0.0141 ± 0.0112 
0.0106 ± 0.0042 
0.0095 ± 0.0061 
0.0130 ± 0.0067 

0.0048 ± 0.0028 
0.0042 ± 0.0033 
0.0047 ± 0.0058 
0.0052 ± 0.0058 
0.0047 ± 0.0033 
0.0036 ± 0.0025 
0.0056 ± 0.0064 

0.0106 ± 0.0053 
0.0078 ± 0.0064 
0.0096 ± 0.0097 
0.0093 ± 0.0078 
0.0093 ± 0.0067 
0.0074 ± 0.0060 
0.0103 ± 0.0099 

Real map. True location: (550, 400 ,0) . Sensor noise: standard deviation of 1%. Sr in percentage. Errors in mean ± standard deviation 



Table 14 Error and success rate depending on the sensor noise level 

Sensor noise sr 
ex(cells) ey(cells) eθ (degrees) 

0.5 

1.0 

2.5 

5.0 

7.5 

10.0 

96 

96 

96 

82 

80 

80 

0.0107 ± 0.0037 

0.0095 ± 0.0061 

0.0222 ± 0.0163 

0.0384 ± 0.0237 

0.0676 ± 0.0773 

0.0604 ± 0.0455 

0.0042 ± 0.0029 

0.0036 ± 0.0025 

0.0175 ± 0.0169 

0.0259 ± 0.0199 

0.0438 ± 0.0796 

0.0638 ± 0.1231 

0.0076 ± 0.0053 

0.0074 ± 0.0060 

0.0241 ± 0.0217 

0.0623 ± 0.0715 

0.1068 ± 0.1323 

0.1334 ± 0.1512 

Real map. True location: (550, 400 , 0). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation. NP = 480 

Fig. 6 Left: position error vs. sensor noise. Right: position error vs. population size. Learned map. Sensor noise in standard deviation 
(%). Robot’s poses between brackets 

Table 15 Error and success rate for different random places 

Location 

(320,460,10) 

(531,48,85) 

(440,322,21) 

(75,60,3) 

(210,401,167) 

(351,477,99) 

Np 

60 

120 

60 

240 

140 

80 

Sr 

100 

98 

100 

96 

100 

98 

ex(cells) 

0.0464 ± 0.0362 

0.0309 ± 0.0222 

0.0502 ± 0.0460 

0.0284 ± 0.0188 

0.0169 ± 0.0196 

0.0266 ± 0.0265 

ey(cells) 

0.0324 ± 0.0353 

0.0349 ± 0.0355 

0.1201 ± 0.1251 

0.0118 ± 0.0117 

0.0200 ± 0.0232 

0.0330 ± 0.0245 

eθ (degrees) 

0.0390 ± 0.0291 

0.0415 ± 0.0258 

0.0598 ± 0.0551 

0.0547 ± 0.0582 

0.0417 ± 0.0403 

0.0230 ± 0.0243 

Real map. Sensor noise: standard deviation of 1%. Sr in %. NP is the lowest that optains the maximum Sr. Errors in mean ± standard 
deviation 



Table 16 Comparison with traditional DE-based GL filter 

DE-MC 
Location 

(300,50,90) 

(150,105,0) 

(550,400,0) 

DE 
Location 

(300,50,90) 

(300,50,90) 

(300,50,90) 

(300,50,90) 

(150,105,0) 

(150,105,0) 

(150,105,0) 

(150,105,0) 

(150,105,0) 

(150,105,0) 

(550,400,0) 

(550,400,0) 

(550,400,0) 

Np 

200 

80 

90 

Np 

200 

400 

600 

800 

80 

160 

240 

320 

400 

480 

90 

135 

180 

Sr 

100 

100 

100 

Sr 

64 

82 

98 

98 

44 
76 

78 

94 

98 

100 

82 

88 
100 

ed(mm) 

6.3386 ± 9.3071 

4.1207 ± 3.6661 

23.8167 ± 16.6715 

ed(mm) 

6.5947 ± 4.7508 

7.5427 ± 9.7576 

8.3072 ± 9.1914 

6.5076 ± 7.9818 

19.8139 ± 17.6466 

17.1486 ± 11.9873 

17.8856 ± 19.9534 

14.9048 ± 18.6853 

15.0640 ± 14.1963 

12.9933 ± 12.5968 

32.6667 ± 28.7437 

26.5698 ± 30.1158 

17.0854 ± 21.7391 

eθ (degrees) 

0.0650 ± 0.0704 

0.0327 ± 0.0632 

0.1163 ± 0.0859 

eθ (degrees) 

0.0980 ± 0.0625 

0.1093 ± 0.0933 

0.1109 ± 0.0781 

0.0873 ± 0.0785 

0.0916 ± 0.0634 

0.0520 ± 0.0520 

0.0610 ± 0.0480 

0.0540 ± 0.0447 

0.0508 ± 0.0409 

0.0494 ± 0.0397 

0.0846 ± 0.0754 

0.1007 ± 0.0824 

0.0972 ± 0.0854 

iter 

2091 

1002 

600 

iter 

304 

343 

260 

300 

242 

231 

221 

234 

244 

251 

110 

135 

182 

Simulated map. Sensor noise: standard deviation of 1 %. Sr in percentage. Errors in mean ± standard deviation 

4, 6, and 2, respectively, to obtain the optimum per-
formance regarding the success rate. Moreover, it is 
not possible to reach Sr = 100% when the robot is 
situated in pa 1. 

The errors of the new technique are in the interval 
[4.12, 23.82] mm in position and [0.03, 0.11] degrees 
in orientation, which are slightly lower than the errors 
of the classic version. It is possible to make a compar-
ison between these errors and those obtained by other 
authors in 2D maps. The position error reported by 
Donoso et al. [25] is in the interval [8 cm, 15 cm]. 
Se et al. [59] have published an average position error 
equal to 7 cm and a rotation error of 1°. To the best of 
our knowledge, there are no research groups that have 
obtained localization errors significantly lower than 
our errors in planar maps. However, these compar-
isons have to be considered only as indicative figures. 
It is not easy to make a fair comparison between 
methods that rely on different concepts. 

The results for the real map are introduced in 
Table 17. Similar conclusions can be drawn. 

The population when using the traditional tech-
nique must be increased to obtain the optimum success 
rate. In particular, for pr1, pr2, and pr3, the population 
size has to be multiplied by 6, 4, and 2.5, respectively. 
Furthermore, when the robot is in pr2, the maximum 
success rate that can be obtained with the old version 
is equal to 50 % (much lower than the value obtained 
with the new technique). These facts reinforce the 
conclusion that the new method is more robust and 
reliable. 

The errors of the new version are in the interval 
[0.51, 2.48] mm in position and [0.01,0.03] degrees 
in orientation, which in most cases are lower than the 
errors of the traditional method. 

The time complexity of both GL methods is 

0(DE — MC) = O(DE) = iter x Np x n, (13) 

where n represents the number of measurements of 
the laser scan. The computational times can be com-
pared by analyzing the population size and the number 
of iterations to converge (Np x iter), because n is 



Table 17 Comparison with traditional DE-based GL filter 

DE-MC 
Location 

(100,450,45) 

(470,425,37) 

(550,400,0) 

DE 
Location 

(100,450,45) 

(100,450,45) 

(100,450,45) 

(100,450,45) 

(100,450,45) 

(100,450,45) 

(470,425,37) 

(470,425,37) 

(470,425,37) 

(470,425,37) 

(550,400,0) 

(550,400,0) 

(550,400,0) 

(550,400,0) 

Np 

180 

600 

480 

Np 

180 

360 

540 

720 

900 

1080 

600 

1200 

1800 

2400 

480 

720 

960 

1200 

Sr 

100 

96 

96 

Sr 

54 

76 

76 

80 

94 

96 

22 
24 

50 

50 

52 

72 

78 

96 

ed(mm) 

2.4826 ± 2.9340 

0.5659 ± 0.4701 

0.5080 ± 0.3296 

ed(mm) 

1.1102 ± 0.3543 

3.1219 ± 2.9649 

2.6114 ± 2.5429 

3.7547 ± 4.1548 

3.1741 ± 3.8807 

2.1037 ± 2.7321 

1.1102 ± 0.3543 

1.2580 ± 2.0617 

0.7738 ± 0.5423 

0.6574 ± 0.4294 

2.0495 ± 1.2039 

1.6789 ± 0.8801 

1.6409 ± 0.9159 

1.2801 ± 0.8180 

eθ(degrees) 

0.0306 ± 0.0271 

0.0084 ± 0.0068 

0.0074 ± 0.0060 

eθ(degrees) 

0.0187 ± 0.0227 

0.0446 ± 0.0411 

0.0486 ± 0.0495 

0.0651 ± 0.0705 

0.0534 ± 0.0699 

0.0297 ± 0.0297 

0.0187 ± 0.0227 

0.0183 ± 0.0192 

0.0101 ± 0.0067 

0.0135 ± 0.0082 

0.0930 ± 0.0220 

0.0262 ± 0.0181 

0.0193 ± 0.0143 

0.0163 ± 0.0146 

iter 

1202 

4304 

1308 

iter 

245 

291 

300 

322 

306 

374 

730 

752 

900 

948 

452 

422 

358 

401 

Real map. Sensor noise: standard deviation of 1%. Sr in percentage. Errors in mean ± standard deviation 

the same for both methods. Observing the tables, the 
reduction of the convergence speed is compensated by 
the decrease of the population size. 

6 Conclusions 

A new method that combines the DE evolutionary 
algorithm and the population-based MCMC technique 
has been proposed in this paper to solve the GL prob-
lem. This new version maintains the advantages of 
both approaches. It inherits the statistical robustness 
of the MCMC technique and it keeps the exploration 
properties of the evolutionary filter. Besides, the DE-
based mutation stage solves the scale and orientation 
problem of the jumps of the MCMC algorithms. 

The experimental results lead us to conclude that 
this new method is an appropriate approach to solve 
the GL problem in both simulated and real maps, and it 
does not present any drawback when compared to the 

previous version of the DE filter. In the experiments 
carried out, we have measured the localization error 
and the success rate depending on the sensor noise and 
the population size. 

An important conclusion that can be deduced from 
the experiments is that there is a significant improve-
ment in the performance depending on the number 
of particles, which is strongly related to the param-
eter that we have defined as the success rate. The 
success rate has been computed when the robot is 
located at different places and it is increased in all 
experiments when compared to the traditional ver-
sion if the same population size is used, making this 
new version a more suitable approach in challenging 
environments where it is difficult to obtain the true 
location. 

The population requirements are much lower than 
the demands of our previous version of the DE-based 
GL filter. Although the population size of the MC 
sampling algorithm is huge when compared to the 



DE method, this hybrid version needs less particles 
to obtain satisfactory results. In general, the popula-
tion size should be larger and the success rate is more 
influenced by the sensor noise in learned maps. 

The accuracy is slightly improved in position and 
orientation. If the sensor noise is increased, there is a 
low degradation of the estimation results because the 
error grows linearly with the sensor noise. The noise 
level that still allows a maximum success rate is higher 
than the noise of commercial devices. 

The GL module developed here will be a useful 
tool when a map of the environment provided by per-
ceptive sensors like laser range finders is available. 
With a single laser scan (which is a strong assump-
tion), the mobile robot can obtain its own location. 
Besides, additional laser scans could be used to update 
the estimate. The accuracy shown in the experimen-
tal results is good enough to use the current method 
in manipulation tasks. Although the method presents 
a good performance regarding the sensor noise, high 
uncertainties in the sensors or the map will decrease 
the algorithm performance. 

Since the sum of the squared errors is not the most 
adequate metric for environments with occlusions or 
dynamic obstacles because big errors strongly penal-
ize the cost value, the current method will not be the 
most appropriate for these cases. In our previous work 
[5], a GL technique that relies on different cost func-
tion assumptions has obtained a great performance in 
this type of environments. An interesting work to carry 
out is to implement this different fitness function in 
the current method. 

A detailed study about the convergence properties 
is a challenging task that must be accomplished in the 
future work because the computational cost is highly 
dependent on this factor. 

The evolutionary nature of this filter causes many 
interesting features: it can deal with nonlinear state 
space dynamics and noise distributions; it does not 
require any assumptions on the shape of the posterior 
density; the computational resources are focused on 
the most relevant zones. 
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