Skip to main content

Advertisement

Log in

Generation and Analyses of the Reinforced Wave Gait for a Mammal-Like Quadruped Robot

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The statically stable gait control of a mammal-like quadruped robot that provides an adequate or stable manner of traversing over irregular terrain was addressed. The reinforced wave gait which integrates new parameters of the lateral offset and displacements of the center of gravity (COG) based on the profiles of standard wave gait was investigated. The continuous and discontinuous motion trajectory of a robot’s COG in the periodic reinforced wave gait could be realized. The longitudinal and lateral stability margins of a reinforced wave gait were formulated for the gait generation and control of a quadruped robot. Moreover, the effects of the lateral offset on the stability, velocity and the energy efficiency were studied in details. The reinforced wave gait with lateral sway motion adequately improved the stability, and two particular gait patterns that involve the lateral sway motion for a maximal velocity and maximum achievable stability were described. With consideration of a quadruped robot with asymmetric carrying loads on its body, a scheme that relates to the gait parameters of the displacement of a robot’s COG to avoid losing stability was proposed. The simulation and experimental results about the effects of lateral offset added in the reinforced wave gait on the minimum power consumption during a quadruped robot walking on a flat terrain indicated that the reinforced wave gait with a larger lateral offset would generate a better wave gait with a higher velocity and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Bigdog, the rough-terrain quadruped robot. In: Proceedings of the 17th World Congress, pp 10823–10825 (2008)

  2. Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M., Remy, C.D., Siegwart, R.: StarlETH: A compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: 15th International Conference on Climbing and Walking Robot-CLAWAR 2012 (2012)

  3. Bazeille, S., Barasuol, V., Focchi, M., Havoutis, I., Frigerio, M., Buchli, J., Caldwell, D.G., Semini, C.: Quadruped robot trotting over irregular terrain assisted by stereo-vision. Intel. Serv. Robotics 7(2), 67–77 (2014)

    Article  Google Scholar 

  4. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  5. Roy, S.S., Pratihar, D.K.: Effects of turning gait parameters on energy consumption and stability of a six-legged walking robot. Robot. Auton. Syst. 60(1), 72–82 (2012)

    Article  Google Scholar 

  6. Kar, D., Kurien Issac, K., Jayarajan, K.: Minimum energy force distribution for a walking robot. J. Robot. Syst. 18(2), 47–54 (2001)

    Article  MATH  Google Scholar 

  7. McGhee, R.B., Frank, A.A.: On the stability properties of quadruped creeping gaits. Math. Biosci. 3, 331–351 (1968)

    Article  MATH  Google Scholar 

  8. Song, S.-M., Waldron, K.J.: An analytical approach for gait study and its applications on wave gaits. Int. J. Robot. Res. 6(2), 60–71 (1987)

    Article  Google Scholar 

  9. Song, S.-M., Choi, B.S.: The optimally stable ranges of 2 < e1 > n < /e1 > -legged wave gaits. IEEE Trans. Syst. Man Cybern. 20(4), 888–902 (1990)

    Article  MATH  Google Scholar 

  10. Jeong, K.-M., Oh, J.-H.: An aperiodic z type spinning gait planning method for a quadruped walking robot. Auton. Robot. 2(2), 163–173 (1995)

    Article  Google Scholar 

  11. Zhang, C.-D., Song, S.-M.: Turning gaits of a quadrupedal walking machine. Adv. Robot. 7(2), 121–157 (1992)

    Article  Google Scholar 

  12. Hirose, S., Kikuchi, H., Umetani, Y.: The standard circular gait of a quadruped walking vehicle. Adv. Robot. 1(2), 143–164 (1986)

    Article  Google Scholar 

  13. Jiménez, M.A, de Santos, P.G., Tabera, J.: An omnidirectional control algorithm for walking machines based on a wave-crab gait. In: Advances in Intelligent Autonomous Systems, pp 355–380. Springer (1999)

  14. Song, S.-M., Soo Choi, B.: A study on continuous follow-the-leader (FTL) gaits: an effective walking algorithm over rough terrain. Math. Biosci. 97(2), 199–233 (1989)

    Article  MATH  Google Scholar 

  15. Hirose, S.: A study of design and control of a quadruped walking vehicle. Int. J. Robot. Res. 3(2), 113–133 (1984)

    Article  Google Scholar 

  16. Bai, S., Low, K.H., Zielinska, T.: Quadruped free gait generation based on the primary/secondary gait. Robotica 17(04), 405–412 (1999)

    Article  Google Scholar 

  17. Estremera, J: de Santos, P.G.: Generating continuous free crab gaits for quadruped robots on irregular terrain. IEEE Trans. Robot. 21(6), 1067–1076 (2005)

    Article  Google Scholar 

  18. Erden, M.S., Leblebicioğlu, K.: Analysis of wave gaits for energy efficiency. Auton. Robot. 23 (3), 213–230 (2007)

    Article  Google Scholar 

  19. Inagaki, S., Yuasa, H., Suzuki, T., Arai, T.: Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control. Robot. Auton. Syst. 54(2), 118–126 (2006)

    Article  Google Scholar 

  20. Hung, M.H., Cheng, F.T., Lee, H.L., Orin, D.E.: Increasing the stability margin of multilegged vehicles through body sway. J. Chin. Inst. Eng. 28(1), 39–54 (2005)

    Article  Google Scholar 

  21. Tsukagoshi, H., Hirose, S., Yoneda, K.: Maneuvering operations of a quadruped walking robot on a slope. Adv. Robot. 11(4), 359–375 (1996)

    Article  Google Scholar 

  22. Hirose, S., Kunieda, O.: Generalized standard foot trajectory for a quadruped walking vehicle. Int. J. Robot. Res. 10(1), 3–12 (1991)

    Article  Google Scholar 

  23. Santos, P.G.D., Jimenez, M.A.: Generation of discontinuous gaits for quadruped walking vehicles. J. Robot. Syst. 12(9), 599–611 (1995)

    Article  MATH  Google Scholar 

  24. Lu, D., Dong, E., Liu, C., Xu, M., Yang, J.: Design and development of a leg-wheel hybrid robot “HyTRo-I”. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 6031–6036. IEEE (2013)

  25. Lu, D., Dong, E., Liu, C., Wang, Z., Zhang, X., Xu, M., Yang, J.: Mechanical system and stable gait transformation of a leg-wheel hybrid transformable robot. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp 530–535. IEEE (2013)

  26. Alexander, R.M.: Principles of animal locomotion. Princeton University Press (2003)

  27. Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M., Kram, R., Lehman, S.: How animals move: an integrative view. Science 288(5463), 100–106 (2000)

    Article  Google Scholar 

  28. Bottaro, A., Casadio, M., Morasso, P.G., Sanguineti, V.: Body sway during quiet standing: is it the residual chattering of an intermittent stabilization process Hum. Mov. Sci. 24(4), 588–615 (2005)

    Article  Google Scholar 

  29. Donelan, J.M., Shipman, D.W., Kram, R., Kuo, A.D.: Mechanical and metabolic requirements for active lateral stabilization in human walking. J. Biomech. 37(6), 827–835 (2004)

    Article  Google Scholar 

  30. Zhang, C.-D., Song, S.-M.: Stability analysis of wave-crab gaits of a quadruped. J. Robot. Syst. 7(2), 243–276 (1990)

    Article  MATH  Google Scholar 

  31. Zhang, C.-D., Song, S.-M.: A study of the stability of generalized wave gaits. Math. Biosci. 115 (1), 1–32 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, C.D., Song, S.M.: Stability analysis of wavecrab gaits of a quadruped. J. Robot. Syst. 7 (2), 243–276 (1990)

    Article  MATH  Google Scholar 

  33. de Santos, P.G., Garcia, E., Ponticelli, R., Armada, M.: Minimizing energy consumption in hexapod robots. Adv. Robot. 23(6), 681–704 (2009)

    Article  Google Scholar 

  34. Garcia, E., Galvez, J.A., De Santos, P.G.: On finding the relevant dynamics for model-based controlling walking robots. J. Intell. Robot. Syst. 37(4), 375–398 (2003)

    Article  Google Scholar 

  35. Roy, S.S., Pratihar, D.K.: Kinematics, dynamics and power consumption analyses for turning motion of a six-legged robot. J. Intell. Robot. Syst. 74(3-4), 663–688 (2014)

    Article  Google Scholar 

  36. Jin, B., Chen, C., Li, W.: Power Consumption Optimization for a Hexapod Walking Robot. J. Intell. Robot. Syst. 71(2), 195–209 (2013)

    Article  Google Scholar 

  37. Roy, S.S., Singh, A.K., Pratihar, D.K.: Estimation of optimal feet forces and joint torques for on-line control of six-legged robot. Robot. Comput. Integr. Manuf. 27(5), 910–917 (2011)

    Article  Google Scholar 

  38. Roy, S.S., Pratihar, D.K.: Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot. Robot. Comput. Integr. Manuf. 29(2), 400–416 (2013)

    Article  Google Scholar 

  39. Lin, B.S., Song, S.M.: Dynamic modeling, stability, and energy efficiency of a quadrupedal walking machine. J. Robot. Syst. 18(11), 657–670 (2001)

    Article  MATH  Google Scholar 

  40. Gregorio, P., Ahmadi, M., Buehler, M.: Design, control, and energetics of an electrically actuated legged robot. IEEE Trans. Syst. Man Cybern. B Cybern. 27(4), 626–634 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erbao Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Dong, E., Liu, C. et al. Generation and Analyses of the Reinforced Wave Gait for a Mammal-Like Quadruped Robot. J Intell Robot Syst 82, 51–68 (2016). https://doi.org/10.1007/s10846-015-0265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0265-4

Keywords

Navigation