Skip to main content
Log in

Formation Control and Tracking for Co-operative Robots with Non-holonomic Constraints

Categories (2), (3)

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper mainly addresses formation control problem of non-holonomic systems in an optimized manner. Instead of using linearization to solve this problem approximately, we designed control laws with guaranteed global convergence by leveraging nonlinear transformations. Under this nonlinear transformation, consensus of non-holonomic robots can be converted into a stabilization problem, to which optimal treatment applies. This concept is then extended to the formation control and tracking problem for a team of robots following leader-follower strategy. A trajectory generator prescribes the feasible motion of virtual reference robot, a decentralized control law is used for each robot to track the reference while maintaining the formation. The asymptotic convergence of follower robots to the position and orientation of the reference robot is ensured using the Lyapunov function which is also generated using chained form differential equations. In order to witness the efficacy of the scheme, simulations results are presented for Unicycle and Car-like robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27, 37–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  3. Biglarbegian, M.: A novel robust leader-following control design for mobile robots. J. Intell. Robot. Syst. 71, 391–402 (2013)

    Article  Google Scholar 

  4. Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Ind. Informat. 9(1), 427–438 (2013)

    Article  Google Scholar 

  5. Cao, Y.C., Ren, W.: Optimal linear consensus algorithm: An LQR perspective. IEEE Trans. Syst. Man, Cybern. B 40, 819–830 (2010)

    Article  Google Scholar 

  6. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: On a class of hierarchical formations of unicycle and their internal dynamics. IEEE Trans. Autom. Control 57(4), 845–859 (2012)

    Article  MathSciNet  Google Scholar 

  7. Dimarogonas, D.V., Kyriakopoulos, K.J.: On the randezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control 52(5), 916–922 (2007)

    Article  MathSciNet  Google Scholar 

  8. Dong, W., Farrell, J.A.: Co-operative control of multiple non-holonomic mobile agents. IEEE Trans. Autom. Control 53(6), 1434–1448 (2008)

    Article  MathSciNet  Google Scholar 

  9. Dong, W.J., Guo, Y., Farrell, J.A.: Formation control of non-holonomic mobile robots. In: Proceeding Amer. Control Conf., pp 5602–5607 (2006)

  10. Hausman, K., Mueller, J., Hariharan, A., Ayanian, N., Sukhatme, G.S.: Cooperative multi-robot control for target tracking with efficient switching of onboard sensing topologies. In: Proceeding IROS Workshop Taxonomies Interconnected Systems: Topology in Distributed Robotics (2014). http://robotics.usc.edu/publications/896/

  11. Huang, J., Farritor, S.M., Qadi, A., Goddard, S.: Localization and follow-the-leader control of a heterogeneous group of mobile robots. IEEE/ASME Trans. Mechatronics 11(2), 205–215 (2006)

    Article  Google Scholar 

  12. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  13. Kazerooni, E.S., Khorasani, K.: An lmi approach to optimal consensus seeking in multi-agent systems. In: Proceeding Amer. Control Conf., pp 4519–4524 (2009)

  14. Khalil, H.: Nonlinear systems, 3rd edn. Prentice Hall (2001)

  15. Kim, Y.S., Mesbahi, M.: On maximizing the second smallest eigenvalue of a state-dependant graph laplacian. IEEE Trans. Autom. Control 51, 115–120 (2006)

    MathSciNet  Google Scholar 

  16. Kolmanovky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Control Syst. Mag. 15(6), 20–36 (1995)

    Article  Google Scholar 

  17. La, H.M., Lim, R., Sheng, W.: Multi-robot cooperative learning for predator avoidance. IEEE Trans. Control Syst. Technol. 23(1), 52–63 (2015)

    Article  Google Scholar 

  18. Leonard, N., Fiorelli, E.: Virtual leaders, artificial potentials and coordianted control of groups. In: Proceeding IEEE Int. Conf. Decis. and Control, vol. 3, pp 2968–2973 (2001)

  19. Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. 57(1), 213–224 (2010)

    Article  MathSciNet  Google Scholar 

  20. Lin, X., Stephen, B.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005)

    Article  MathSciNet  Google Scholar 

  22. Ma, C.Q., Li, T., Zhang, J.F.: Leader following consensus control for multi-agent systems under measurement noises. In: Proceeding World Congr. Int. Fed. Autom. Control, pp 1528–1533 (2008)

  23. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robot. 30(1), 73–86 (2011)

    Article  MATH  Google Scholar 

  24. Murray, R.M.: Recent research in cooperative control of multi-vehicle systems. ASME J. Dyn. Syst. Meas. Control 129(5), 571–583 (2007)

    Article  Google Scholar 

  25. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  26. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  27. Peng, Z., Wen, G., Rahmani, A., Yu, Y.: Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Robot. Auton. Syst. 61(9), 988–996 (2013)

    Article  Google Scholar 

  28. Qu, Z.: Cooperative control of dynamical systems: applications to autonomous vehicles. Springer (2009)

  29. Ren, W.: Multi-vehicle consensus with a time-varying reference state. Syst. Control Lett. 56, 474–483 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ren, W., Beard, R.W., Mclain, T.W.: Coordination variables and consensus building in multiple vehicle systems. In: Proceeding Block Island Workshop Cooperative Control, vol. 390 (2007)

  31. Roldão, V., Cunha, R., Cabecinhas, D., Silvestre, C., Oliveira, P.: A leader-following trajectory generator with application to quadrotor formation flight. Robot. Auton. Syst. 62, 1597–1609 (2014)

    Article  Google Scholar 

  32. Saber, R.O., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  33. Scardovi, L., Sepulchre, R.: Synchronization in network of identical linear systems. Automatica 45(11), 2557–2562 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schlanbusch, R., Kristiansen, R., Nicklasson, P.J.: Attitude reference generation for leader-follower formation with nadir pointing leader. In: Proceeding Amer. Control Conf (2010)

  35. Siciliano, B., Khatib, O. (eds.): Handbook of robotics. Springer (2008)

  36. Stipanovic, D.M., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized overallping control of a formation of unmanned aerial vehicles. Automatica 40(8), 1285–1296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tanner, H., Pappas, G., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)

    Article  Google Scholar 

  38. Tian, Y., Sarkar, N.: Control of a mobile robot subject to wheel slip. J. Intell. Robot. Syst. 74, 915–929 (2014)

    Article  Google Scholar 

  39. Tuna, S.E.: Synchronizing linear systems via partial-state coupling. Automatica 44(8), 2179–2184 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, P.K.C., Hadaegh, F.Y.: Coordination and control of multiple microspacecraft moving in formation. J. Astronaut Sci. 44(3), 315–355 (1996)

    Google Scholar 

  41. Wang, Z., Gu, D.: Cooperative target tracking control of multiple robots. IEEE Trans. Ind. Electron. 59(8), 3232–3240 (2012)

    Article  Google Scholar 

  42. Canudas de Witt, C., Khennouf, H.: Theory of robot control. Springer, London (1996)

    Book  Google Scholar 

  43. Yamaguchi, H.: A distributed motion coordination of strategy for multiple non-holonomic mobile robots in co-operative hunting operations. Robot. Auton. Syst. 43(4), 257–282 (2003)

    Article  Google Scholar 

  44. Yang, E., Gu, D.: Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles. IEEE/ASME Trans. Mechatronics 12(2), 205–215 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umer Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Li, S., Wang, Q. et al. Formation Control and Tracking for Co-operative Robots with Non-holonomic Constraints. J Intell Robot Syst 82, 163–174 (2016). https://doi.org/10.1007/s10846-015-0287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0287-y

Keywords

Navigation