Skip to main content
Log in

A Learning-Based Fault Tolerant Tracking Control of an Unmanned Quadrotor Helicopter

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel learning-based fault tolerant tracking control approach by using an extended Kalman filter (EKF) to optimize a Mamdani fuzzy state-feedback tracking controller. First, a robust state-feedback tracking controller is designed as the baseline controller to guarantee the expected system performance in the fault-free condition. Then, the EKF is employed to regulate the shape of membership functions and rules of fuzzy controller to adapt with the working conditions automatically after the occurrence of actuator faults. Next, based on the modified fuzzy membership functions and rules, the baseline controller is readjusted to properly compensate the adverse effects of actuator faults and asymptotically stabilize the closed-loop system. Finally, in order to verify the effectiveness of the proposed method, several groups of numerical simulations are carried out by comparing the performance of a tracking control scheme and the presented technique. Simulation results demonstrate that the proposed method is effective for optimizing the fuzzy tracking controller on-line and counteracting the side effects of actuator faults, and the control performance is significantly improved as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Y.M., Chamseddine, A.: Fault tolerant flight control techniques with application to a quadrotor UAV testbed. In: Automatic Flight Control Systems-Latest Developments, InTech, pp. 119–150 (2012)

  2. Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Eng. Pract. 19(10), 1195–1207 (2011)

    Article  Google Scholar 

  3. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Tech. 12(4), 510–516 (2004)

    Article  MathSciNet  Google Scholar 

  4. Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)

    Article  Google Scholar 

  5. Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng. Pract. 19(9), 1023–1036 (2011)

    Article  Google Scholar 

  6. Yuan, C., Zhang, Y.M., Liu, Z.X.: A survey on technologies for automatic forest fire monitoring, detection and fighting using UAVs and remote sensing techniques. Can. J. For. Res. 45(7), 783–792 (2015)

    Article  MathSciNet  Google Scholar 

  7. Murphy, D.W., Cycon, J.: Applications for mini VTOL UAV for law enforcement. In: Enabling Technologies for Law Enforcement and Security, International Society for Optics and Photonics, pp. 35–43 (1999)

  8. Metni, N., Hamel, T.: A UAV for bridge inspection: Visual servoing control law with orientation limits. Autom. Constr. 17(1), 3–10 (2007)

    Article  Google Scholar 

  9. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)

    Article  Google Scholar 

  10. Shakernia, O., Ma, Y., Koo, T.J., Sastry, S.: Landing an unmanned air vehicle: Vision based motion estimation and nonlinear control. Asian J. Control 1(3), 128–145 (1999)

    Article  Google Scholar 

  11. Gomez-Balderas, J.E., Flores, G., Carrillo, L.G., Lozano, R.: Tracking a ground moving target with a quadrotor using switching control. J. Intell. Robot. Syst. 70(1–4), 65–78 (2013)

    Article  Google Scholar 

  12. Rinaldi, F., Chiesa, S., Quagliotti, F.: Linear quadratic control for quadrotors UAVs dynamics and formation flight. J. Intell. Robot. Syst. 70(1–4), 203–220 (2013)

    Article  Google Scholar 

  13. Guerrero, J.A., Garcia, P.C., Challal, Y.: Quadrotors formation control. J. Intell. Robot. Syst. 70(1–4), 221–231 (2013)

    Article  Google Scholar 

  14. Saska, M., Krajník, T., Vonásek, V., Kasl, Z., Spurný, V., Přeuc̆il, L.: Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups. J. Intell. Robot. Syst. 73 (1–4), 603–622 (2014)

    Article  Google Scholar 

  15. Escareño, J., Salazar, S., Romero, H., Lozano, R.: Trajectory control of a quadrotor subject to 2D wind disturbances. J. Intell. Robot. Syst. 70(1–4), 51–63 (2013)

    Article  Google Scholar 

  16. Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control system. Annual Rev. Control 32(2), 229–252 (2008)

    Article  Google Scholar 

  17. Zhang, Y.M., Chamseddine, A., Rabbath, C.A., Gordon, B.W., Su, C.Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Frankl. Inst. 350(9), 2396–2422 (2013)

    Article  MATH  Google Scholar 

  18. Li, T., Zhang, Y.M., Gordon, B.W.: Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 227(1), 12–23 (2013)

    Article  Google Scholar 

  19. Amoozgar, M.H., Chamseddine, A., Zhang, Y.M.: Experimental test of a two-stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70 (1–4), 107–117 (2013)

    Article  Google Scholar 

  20. Chamseddine, A., Theilliol, D., Zhang, Y.M., Join, C., Rabbath, C.A.: Active fault-tolerant control system design with trajectory re-planning against actuator faults and saturation: Application to a quadrotor unmanned aerial vehicle. Int. J. Adapt. Control Signal Proces. 29(1), 1–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Milhim, A.B., Zhang, Y.M., Rabbath, C.A.: Gain scheduling based PID controller for fault tolerant control of a quad-rotor UAV. In: AIAA Infotech Aerospace, pp. 20–22. Atlanta (2010)

  22. Izadi, H.A., Gordon, B.W., Zhang, Y.M.: A data-driven fault tolerant model predictive control with fault identification. In: Proceedings of the Control and Fault-Tolerant Systems (SysTol) Conference, pp. 732–737. Nice, France (2010)

    Google Scholar 

  23. Simon, D.: Sum normal optimization of fuzzy membership functions. Intern. J. Uncertain. Fuzziness Knowl. Syst. 10(4), 363–384 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiménez, A., Al-Hadithi, B.M., Matía, F.: Extended Kalman filter for the estimation and fuzzy optimal control of Takagi-Sugeno model. In: Fuzzy Control. Theory Appl., pp. 91–110 (2011)

  25. Berstecher, R.G., Palm, R., Unbehauen, H.D.: An adaptive fuzzy sliding-mode controller. IEEE Trans. Ind. Electron 48(1), 18–31 (2001)

    Article  MATH  Google Scholar 

  26. Tao, C.W., Taur, J.S., Chen, Y.C.: Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system. Fuzzy Sets Syst. 161(15), 2081–2103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Truong, D.Q., Ahn, K.K.: Force control for press machines using an online smart tuning fuzzy PID based on a robust extended Kalman filter. Expert Syst. with Appl. 38(5), 5879–5894 (2011)

    Article  Google Scholar 

  28. Lai, L.C., Yang, C.C., Wu, C.J.: Time-optimal control of a hovering quad-rotor helicopter. J. Intell. Robot. Syst. 45(2), 115–135 (2006)

    Article  Google Scholar 

  29. Abdolhosseini, M., Zhang, Y.M., Rabbath, C.A.: An efficient model predictive control scheme for an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70(1–4), 27–38 (2013)

    Article  Google Scholar 

  30. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation. Wiley (2003)

  31. Yu, X., Jiang, J.: Hybrid fault-tolerant flight control system design against partial actuator failures. IEEE Trans. Control Syst. Tech. 20(4), 871–886 (2012)

    Article  MathSciNet  Google Scholar 

  32. Liao, F., Wang, J.L., Yang, G.H.: Reliable robust flight tracking control: An LMI approach. IEEE Trans. Control Syst. Tech. 10(1), 76–89 (2002)

    Article  Google Scholar 

  33. Apkarian, P., Tuan, H.D., Bernussou, J.: Continuous-time analysis, eigenstructure assignment, and H 2 synthesis with enhanced linear matrix inequalities (LMI) characterizations. IEEE Trans. Autom. Control 46(12), 1941–1946 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ghaoui, L.E.l., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. Phila. Soc. Ind. Appl. Math. 15, 1 (1994)

    MathSciNet  MATH  Google Scholar 

  35. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1(1), 7–31 (1993)

    Article  Google Scholar 

  36. Ahn, K.K., Truong, D.Q.: Online tuning fuzzy PID controller using robust extended Kalman filter. J. Process Control 19(6), 1011–1023 (2009)

    Article  Google Scholar 

  37. Grewal, M.S., Andrews, A.P.: Kalman filtering: Theory and Practice using MATLAB. Wiley (2011)

  38. Fan, J.H., Zhang, Y.M., Zheng, Z.Q.: Robust fault-tolerant control against time-varying actuator faults and saturation. Control Theory Appl. 6(14), 2198–2208 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yuan, C., Zhang, Y. et al. A Learning-Based Fault Tolerant Tracking Control of an Unmanned Quadrotor Helicopter. J Intell Robot Syst 84, 145–162 (2016). https://doi.org/10.1007/s10846-015-0293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0293-0

Keywords

Navigation