Skip to main content
Log in

Spatial Trajectory Tracking Control of a Fully Actuated Helicopter in Known Static Environment

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider the control problem of tracking a 3D spatial trajectory for a fully actuated helicopter in static known environment, which is predefined to avoid obstacles and collisions considering the distance, fuel consumption and other related constraints. For this purpose, a nonlinear controller using the radial basis function neural network (RBFNN) is designed. Based on Lyapunov analysis, the proposed adaptive neural network control succeeds in tracking the desired trajectory robustly to a small neighborhood of zero, and guarantees the boundedness of all the closed-loop signals at the same time. Extensive numerical results are given to illustrate the effectiveness of the designed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kandil, A.A., Wagner, A., Gotta, A., Badreddin, E.: Collision avoidance in a recursive nested behaviour control structure for unmanned aerial vehicles. In: 2010 IEEE International Conference on Systems, Man and Cybernetics, pp 4276–4281. IEEE (2010)

  2. Hoffer, N.V., Coopmans, C., Jensen, A.M., Chen, Y.: A survey and categorization of small low-cost unmanned aerial vehicle system identification. J. Intell. Robot. Syst. 74(1-2), 129–145 (2014)

    Article  Google Scholar 

  3. He, W., Zhang, S.: Control design for nonlinear flexible wings of a robotic aircraft. IEEE Trans. Control Syst. Technol. (2016). In Press, doi:10.1109/TCST.2016.2536708

  4. Liu, H., Bai, Y., Lu, G., Shi, Z., Zhong, Y.: Robust tracking control of a quadrotor helicopter. J. Intell. Robot. Syst. 75(3-4), 595–608 (2014)

    Article  Google Scholar 

  5. Ge, S.S., Ren, B.B., Tee, K.P., Lee, T.H.: Approximation-based control of uncertain helicopter dynamics. IET Control Theory and Applications 3(7), 941–956 (2009)

    Article  MathSciNet  Google Scholar 

  6. Sira-ramirez, H., Zribi, M., Ahmad, S.: Dynamical sliding mode control approach for vertical flight regulation in helicopters. In: IEEE Proceedings-Control Theory and Applications, vol. 141, pp 19–24. IEEE (1994)

  7. Yang, C.D., Liu, W.H., Kung, C.C.: Robust nonlinear H decoupling control of flight vehicle in hovering. In: IEEE Conference on Decision and Control, vol. 4, pp 4486–4491. IEEE (2002)

  8. Luo, C.C., Liu, R.F., Yang, C.D., Chang, Y.H.: Helicopter \(H_{\infty }\) control design with robust flying quality. Aerosp. Sci. Technol. 7(2), 159–169 (2003)

    Article  MATH  Google Scholar 

  9. Civita, M.L., Papageorgiou, G., Messner, W.C., Kanade, T.: Design and flight testing of an \(H_{\infty }\) controller for a robotic helicopter. J. Guid. Control. Dyn. 29(2), 485–494 (2006)

    Article  Google Scholar 

  10. Gadewadikar, J., Lewis, F., Subbarao, K., Chen, B.M.: Structured h-infinity command and control-loop design for unmanned helicopters. J. Guid. Control. Dyn. 31(4), 1093–1102 (2008)

    Article  Google Scholar 

  11. Johnson, E.N., Kannan, S.K.: Adaptive trajectory control for autonomous helicopters. J. Guid. Control. Dyn. 28(3), 524–538 (2005)

    Article  Google Scholar 

  12. Madani, T., Benallegure, A.: Backstepping control for a quadrotor helicopter. IEEE (2006)

  13. Enns, R., Si, J.: Helicopter trimming and tracking control using direct neural dynamic programming. IEEE Transactions on Neural Network 14(4), 929–939 (2003)

    Article  Google Scholar 

  14. Cui, R., Ren, B., Ge, S.S.: Synchronised tracking control of multi-agent system with high order dynamics. IET Control Theory & Applications 6(5), 603–614 (2012)

    Article  MathSciNet  Google Scholar 

  15. Chen, M., Ge, S.S., Ren, B.B.: Robust attitude control of helicopters with actuator dynamics using neural networks. IET Control Theory Applications 4(12), 2837–2854 (2009)

    Article  MathSciNet  Google Scholar 

  16. Marconi, L., Naldi, R.: Robust full degree-of-freedom tracking control of a helicopter. Automatica 43(11), 1909–1920 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, D., Wang, D., Wang, F.-Y., Li, H., Yang, X.: Neural-network-based online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems. IEEE Transactions on Cybernetics 44(12), 2834–2847 (2014)

    Article  Google Scholar 

  18. Liu, D., Wang, D., Li, H.: Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach. IEEE Transactions on Neural Networks and Learning Systems 25(2), 418–428 (2014)

    Article  Google Scholar 

  19. Sun, C., Xia, Y.: An analysis of a neural dynamical approach to solving optimization problems. IEEE Trans. Autom. Control 54(8), 1972–1977 (2009)

    Article  MathSciNet  Google Scholar 

  20. Liu, Z., Chen, C., Zhang, Y., Chen, C.L.P.: Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism. IEEE Transactions on Cybernetics 45(3), 521–532 (2015)

    Article  Google Scholar 

  21. Liu, Z., Lai, G., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Transactions on Neural Networks and Learning Systems 25(12), 2129–2140 (2014)

    Article  Google Scholar 

  22. Wei, H., Zhao, Y., Changyin, S.: “Adaptive Neural Network Control of a Marine Vessel with Constraints Using the Asymmetric Barrier Lyapunov Function”. IEEE Transactions on Cybernetics. In Press, 2016 doi:10.1109/TCYB.2016.2554621

  23. Wang, N., Er, M.J., Han, M.: Parsimonious extreme learning machine using recursive orthogonal least squares. IEEE Transactions on Neural Networks and Learning Systems 25(10), 1828–1841 (2014)

    Article  Google Scholar 

  24. Sun, C., He, W., Ge, W., Chang, C.: Adaptive Neural Network Control of Biped Robots. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2016). In Press, 2016 doi:10.1109/TSMC.2016.2557223

  25. Dai, S.-L., Wang, C., Wang, M.: Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems 25(1), 111–123 (2014)

    Article  Google Scholar 

  26. Wang, M., Wang, C.: Learning from adaptive neural dynamic surface control of strict-feedback systems. IEEE Transactions on Neural Networks and Learning Systems 26(6), 1247–1259 (2012)

    Article  MathSciNet  Google Scholar 

  27. He, W., David, A.O., Yin, Z., Sun, C.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Syst. Man Cybern. Syst. (2016). In Press, doi:10.1109/TSMC.2015.2466194

  28. Li, Z., Huang, Z., He, W., Su, C.-Y.: Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans. Ind. Electron. (2016). In Press, doi:10.1109/TIE.2016.2538741

  29. Xu, B., Shi, Z., Yang, C., Sun, F.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Transactions on Cybernetics 44(12), 2626–2634 (2014)

    Article  Google Scholar 

  30. He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2016)

    Article  Google Scholar 

  31. Tee, K.P., Ge, S.S.: Control of nonlinear systems with partial state constraints using a barrier Lyapunov function. Int. J. Control., 2008–2023 (2011)

  32. He, W., Ge, S.S., Li, Y., Chew, E., Ng, Y.S.: Neural network control of a rehabilitation robot by state and output feedback. J. Intell. Robot. Syst. 80(1), 15–31 (2015)

    Article  Google Scholar 

  33. Zhao, Z., He, W., Ge, S.S.: Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Trans. Control Syst. Technol. 22(4), 1536–1543 (2014)

    Article  Google Scholar 

  34. Liu, Y.-J., Chen, C.L.P., Wen, G., Tong, S.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162–1167 (2011)

    Article  Google Scholar 

  35. Lei, X., Ge, S.S., Fang, J.: Adaptive neural network control of small unmanned aerial rotorcraft. J. Intell. Robot. Syst. 75(2), 331–341 (2014)

    Article  Google Scholar 

  36. Cui, R., Yan, W.: Mutual synchronization of multiple robot manipulators with unknown dynamics. J. Intell. Robot. Syst. 68(2), 105–119 (2012)

    Article  MATH  Google Scholar 

  37. Li, Z., Ge, S.S., Adams, M., Wijesoma, W.: Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators. Automatica 44(3), 776–784 (2008)

    Article  MathSciNet  Google Scholar 

  38. Li, Z., Yang, C., Tang, Y.: Decentralized adaptive fuzzy control of coordinated multiple mobile manipulators interacting with nonrigid environments. IET Control Theory & Application 7(3), 397–410 (2013)

    Article  MathSciNet  Google Scholar 

  39. Li, Z., Huang, Z., He, W., Su, C.-Y.: Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals. IEEE Transactions on Industrial Electronics. In Press, 2016, doi:10.1109/TIE.2016.2538741

  40. Yang, C., Li, Z., Li, J.: Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Transactions on Cybernetics 43(1), 24–36 (2013)

    Article  MathSciNet  Google Scholar 

  41. Li, Z., Su, C. -Y.: Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties. IEEE Transactions on Neural Networks and Learning System 24(9), 1400–1413 (2013)

    Article  Google Scholar 

  42. Wu, H.-N., Wang, J.-W., Li, H.-X.: Design of distributed \(H_{\infty }\) fuzzy controllers with constraint for nonlinear hyperbolic PDE systems. Automatica 48(10), 2535–2543 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Liu, Y.-J., Tong, S.: Adaptive fuzzy control for a class of nonlinear discrete-time systems with backlash. IEEE Trans. Fuzzy Syst. 22(5), 1359–1365 (2014)

    Article  Google Scholar 

  44. Li, H., Wu, C., Yin, S., Lam, H.: Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. (2016). doi:10.1109/TFUZZ.2015.2505331

  45. Liu, Y.-J., Tong, S.: Adaptive fuzzy identification and control for a class of nonlinear pure-feedback MIMO systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 23(5), 1387–1398 (2015)

    Article  Google Scholar 

  46. Wu, H.-N., Wang, J.-W., Li, H.-X.: Fuzzy boundary control design for a class of nonlinear parabolic distributed parameter systems. IEEE Trans. Fuzzy Syst. 22(3), 642–652 (2014)

    Article  Google Scholar 

  47. Li, H., Wang, L., Du, H., Boulkroune, A.: Adaptive fuzzy tracking control for strict-feedback systems with input delay and output constrain. IEEE Trans. Fuzzy Syst. (In Press)

  48. Zhou, Q., Wang, L., Wu, C., Li, H., Du, H.: Adaptive fuzzy control for non-strict feedback systems with input saturation and output constraint. IEEE Trans. Syst. Man Cybern. Syst. (In Press)

  49. Xiangpeng, X., Dong, Y., Huaguang, Z., Yusheng X.: Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach. IEEE Transactions on Cybernetics 46(3), 630–640 (2016)

    Article  Google Scholar 

  50. Xiangpeng, X., Dongsheng, Y., Hongjun, M.: Observer Design of Discrete-Time T-S Fuzzy Systems via Multi-Instant Homogenous Matrix Polynomials [J]. IEEE Transactions on Fuzzy Systems 22 (6), 1174–1179 (2014)

    Google Scholar 

  51. Kaixiang, P., Kai Z., Bo, Y., Jie, D., Zidong, W.: A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes. IEEE Transactions on Industrial Electronics, 2016 64(3), 2615–2624

  52. Kaixiang, P., Kai, Z., Jie, D., Bo, Y.: Quality-relevant fault detection and diagnosis for hot strip mill process with multi-specification and multi-batch measurements. Journal of the Franklin Institute, 2015 352(3), 987–1006

  53. Li, H., Gao, Y., Shi, P., Lam, H.-K.: Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Transactions on Automatic Control (2016). doi:10.1109/TAC.2015.2503566

  54. O. L., et al.: Comparison of neural algorithms for function approximation. Pakistan Journal of Applied Sciences 2, 288–294 (2002)

    Article  Google Scholar 

  55. Padfield, G.: Helicopter flight dynamics: The theory and application of flying qualities and simulation modeling. AIAA, England (1996)

    Google Scholar 

  56. Isidori, A., Marconi, L., Serrani, A.: Robust nonlinear motion control of a helicopter. IEEE Trans. Autom. Control 48, 413–426 (2003)

    Article  MathSciNet  Google Scholar 

  57. Koo, T., Sastry, S.: Differential flatness based full authority helicopter control design. In: Proceedings of the 38th IEEE Conference on Deision and Control, pp 1982–1987. IEEE (1999)

  58. Gavrilets, V.: Autonomous aerobatic maneuvering of miniature helicopters, Ph.D. dissertation, Massachusetts Institute of Technology (2003)

  59. Tee, K.P., Ge, S.S.: Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Transactions on Control System Technology 14(4), 750–760 (2006)

    Article  Google Scholar 

  60. He, W., Ge, S.S., How, B.V.E., Choo, Y.S., Hong, K.-S.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4), 722–732 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  61. He, W., Zhang, S., Ge, S.S.: Robust adaptive control of a thruster assisted position mooring system. Automatica 50(7), 1843–1851 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  62. Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain mimo nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  63. He, W., He, X., Ge, S.S.: Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Transactions on Mechatronics 21(1), 254–265 (2016)

    Google Scholar 

  64. He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66(4), 146–154 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  65. Liu, Y.-J., Tang, L., Tong, S., Chen, C.L.P., Li, D.-J.: Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time mimo systems. IEEE Transactions on Neural Networks and Learning Systems 26(1), 165–176 (2015)

    Article  MathSciNet  Google Scholar 

  66. He, W., Ge, S.S.: Vibration control of a flexible beam with output constraint. IEEE Trans. Ind. Electron. 62(8), 5023–5030 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., He, W., Yin, Z. et al. Spatial Trajectory Tracking Control of a Fully Actuated Helicopter in Known Static Environment. J Intell Robot Syst 85, 127–144 (2017). https://doi.org/10.1007/s10846-016-0378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0378-4

Keywords

Navigation