Skip to main content
Log in

An Improved Extended Active Observer for Adaptive Control of A n DOF Robot Manipulator

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A novel algorithm for simultaneous force estimation and friction compensation of constrained motion of robot manipulators is presented. This represents an extension of the improved extended active observer (IEAOB) algorithm reported earlier and proposes a higher order IEAOB or N−th order IEAOB (IEAOB −N) for a n−DOF robot manipulator. Central to this observer is the use of extra system states modeled as a Gauss-Markov (GM) formulation to estimate the force and disturbances including robot inertial parameters and friction. The stability of IEAOB −N is verified through stability analysis. The IEAOB-1 is validated by applying it to a Phantom Omni haptic device against a Nicosia observer, disturbance observer (DOB)/reaction torque observer (RTOB), and nonlinear disturbance observer (NDO), respectively. The results show that the proposed IEAOB-1 is superior to the compared observers in terms of force estimation. Then, the performance of the IEAOB − N is experimentally studied and compared to the IEAOB-1. Results demonstrate that the IEAOB − N has an improved capability in tracking nonlinear external forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ueda, J., Yoshikawa, T.: Force-reflecting bilateral teleoperation with time delay by signal filtering. IEEE Trans. Robot. Autom. 20, 613–619 (2004)

    Article  Google Scholar 

  2. Sabanovic, A.: SMC framework in motion control systems. Int. J. Adapt Control Signal Process. 21, 731–744 (2007)

    Article  Google Scholar 

  3. Hua, C.C., Liu, P.X.: Convergence analysis of teleoperation systems with unsymmetrical time varying delays. IEEE Trans. Circuits Syst. Express Briefs 56, 240–244 (2009)

    Article  Google Scholar 

  4. Chopra, N., Spong, M.W., Lozano, R.: Synchronization of bilateral teleoperators with time delay. Automatica 44, 2142–2148 (2008)

    Article  MathSciNet  Google Scholar 

  5. Chan, L., Naghdy, F., Stirling, D.: Extended active observer for force estimation and disturbance rejection of robotic manipulators. Robot. Auton. Syst. 61, 1277–1287 (2013)

    Article  Google Scholar 

  6. Chan, L., Naghdy, F., Stirling, D.: Position and force tracking for non-linear haptic telemanipulator under varying delays with an improved extended active observer. Robot. Auton. Syst. 75, 145–160 (2016)

  7. Monfaredi, R, Razi, K., Shiri, S., Seied, G., Rezaei, M.: Achieving high transparency in bilateral teleoperation using stiffness observer for passivity control, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China (2006)

  8. Mobasser, F., Hashtrudi-Zaad, K.: A model independent force observer for teleoperation systems, IEEE International Conference on Mechatronics and Automation, Ontario, Canada (2005)

  9. Chen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A Nonlinear Disturbance Observer for Robotic Manipulators. IEEE Trans. Industrial Elect. 47, 932–938 (2000)

    Article  Google Scholar 

  10. Ahn, H.S.: Synchronization of Bilateral Teleoperation Systems using State and Force Observer, International Conference on Control Automation and Systems, Korea (2010)

  11. Daly, J.M., Wang, D.W.L.: Time-Delayed Output Feedback Bilateral Teleoperation With Force Estimation for n-DOF Nonlinear Manipulators. IEEE Trans. Control Syst. Technol. 22, 299–306 (2014)

    Article  Google Scholar 

  12. Cortesão, R.: On Kalman Active Observers. J. Intell. Robot. Syst. 48, 131–155 (2007)

    Article  Google Scholar 

  13. Cortesão, R., Koeppe, R., Nunes, U., Hirzinger, G.: Data fusion for robotic assembly tasks based on human skills. IEEE Trans. Robot. 20, 941–952 (2004)

    Article  Google Scholar 

  14. Murakami, T., Yu, F., Ohnishi, K.: Torque Sensorless Control in Multidegree-of-Freedom Manipulator. IEEE Trans. Industrial Elect. 40, 259–265 (1993)

    Article  Google Scholar 

  15. Middleton, R.H., Goodwin, G.C.: Adaptive Computed Torque Control for Rigid Link Manipulators, IEEE Conference on Decision and Control, Australia (1986)

  16. Slotine, J.J.E., Li, W.: On the Adaptive Control of Robot Manipulators. Int. J. Robot. Res. 6, 49–59 (1987)

    Article  Google Scholar 

  17. Sadegh, N., Horowitz, R.: Stability Analysis of an Adaptive Controller for Robotic Manipulators, IEEE international conference on Robotics and Automation, CA, USA, 1223–1229 (1987)

  18. George, J., Singla, P., Crassidis, J.L.: Stochastic Disturbance Accommodating Control Using a Kalman Estimator, Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI (2008)

  19. Dahl, P.: Measurement of Solid Friction Parameters of Ball Bearings, Proceedings of 6th Annual Symposium on Incremental Motion Control Systems and Devices, Urbana, IL (1977)

  20. de Wit Canudas, C., Olsson, H., Astrom, K.J., Lischinsky, P.: A New Model for Control of Systems With Friction. IEEE Trans. Autom. Control 40, 419–425 (1995)

    Article  MathSciNet  Google Scholar 

  21. Ramasubramanian, A., Ray, L.E.: Stability and Performance Analysis for Non-Model-Based Friction Estimators, IEEE Conference on Decision and Control, Orlando (2001)

  22. Ramasubramanian, A., Ray, L.E.: Comparison of EKBF-based and Classical Friction Compensation. J. Dyn. Syst. Meas. Control. 129, 236–242 (2006)

    Article  Google Scholar 

  23. Erickson, D., Weber, M., Sharf, I.: Contact Stiffness and Damping Estimation for Robotic Systems. Int. J. Robot. Res. 22, 41–57 (2003)

    Article  Google Scholar 

  24. Gourdeau, R., Schwartz, H.M.: Adaptive Control of Robotic Manipulators Using an Extended Kalman Filter. J. Dyn. Syst. Meas. Control. 115, 203–208 (1993)

    Article  Google Scholar 

  25. Richard, G.: Adaptive control of robotic manipulators. Carleton University, Ph.D. thesis (1990)

  26. Bucy, R.S., Joseph, P.D.: Filtering for Stochastic Processes with Applications to Guidance, Second. Chelsea, New York (1987)

    MATH  Google Scholar 

  27. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice Using MATLAB, 3rd ed. Wiley, Inc. (2008)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linping Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, L., Naghdy, F. & Stirling, D. An Improved Extended Active Observer for Adaptive Control of A n DOF Robot Manipulator. J Intell Robot Syst 85, 679–692 (2017). https://doi.org/10.1007/s10846-016-0402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0402-8

Keywords

Navigation