Skip to main content
Log in

Optimal Capture of a Tumbling Object in Orbit Using a Space Manipulator

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

An Erratum to this article was published on 09 November 2016

Abstract

This paper introduces an optimal capture strategy for a manipulator based on a servicing spacecraft to approach an arbitrarily rotating object, such as a malfunctioning satellite or a piece of orbital debris, for capturing with minimal impact to the robot’s base spacecraft. The method consists of two steps. The first step is to determine an optimal future time and the target object’s corresponding motion state for the robot to capture the tumbling object, so that, at the time when the gripper of the robot intercepts the target the very first instant, the resulting impact or disturbance to the attitude of the base spacecraft will be minimal. The second step is to control the robot to reach the tumbling object at the predicted optimal time along an optimal trajectory. The optimal control problem is solved with random uncertainties in the initial and final boundary conditions. Uncertainties are introduced because sensor and estimation errors inevitably exist in the first step, i.e., determination process of the initial and final boundary conditions. The application of the method is demonstrated using a dynamics simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of robotics technologies for on-orbit services. Progr. Aerospace Sci. 68, 1–26 (2014)

    Article  Google Scholar 

  2. Wee, L., Walker, M.W.: On the dynamics of contact between space robots and configuration control for impact minimization. IEEE Trans. Robot. Autom. 9(5), 581–591 (1993)

    Article  Google Scholar 

  3. Yoshida, K., Nenchev, D.N.: Space robot impact analysis and satellite-base impulse minimization using reaction null-space. In: IEEE International Conference on Robotics and Automation, pp. 1271–1277. Nagoya (1995)

  4. Papadopoulos, E., Paraskevas, I.: Design and configuration control of space robots undergoing impacts. In: 6th International ESA Conference on Guidance, Navigation and Control Systems, pp. 17–20. Loutraki (2005)

  5. Huang, P., Xu, Y. S., Liang, B.: Contac and impact dynamics of space manipulators and free-flying target. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 382–337. Edmonton (2005)

  6. Huang, P., Yuan, J., Xu, Y., Liu, R.: Approach trajectory planning of space robot for impact minimization. In: IEEE International Conference on Information Acquisition, pp. 382–387. Weihai (2006)

  7. Huang, P., Liang, B., Xu, Y.S.: Configuration control of space robots for impact minimization. In: IEEE International Conference on Robotics and Biomimetics, pp. 357–362. Kunming (2006)

  8. Dubowsky, S., Torres, M.: Path planning for space manipulators to minimize spacecraft attitude disturbances. In: IEEE International Conference on Robotics and Automation, pp. 2522–2528. Sacramento (1991)

  9. Agrawal, O.P., Xu, Y.: On the global optimum path planning for redundant space manipulators. IEEE Trans. Syst. Man Cybern., 1306–1316 (1994)

  10. Papadopoulos, E., Abu-Abed, A.: Design and motion planning for a zero-reaction manipulator. In: IEEE International Conference on Robotics and Automation, pp. 1554–1559. San Diego (1994)

  11. Lampariello, R., Agrawal, S., Hirzinger, H.: Optimal motion planning for free-flying robots. In: IEEE International Conference on Robotics and Automation, pp. 3029–3035. Taipei (2003)

  12. Aghili, F.: Optimal control for robotic capturing and passivation of a tumbling satellite with unknown dynamics. In: AIAA Guidance Navigation and Control Conference, pp. 1–21. Honolulu (2008)

  13. Oki, T., Nakanishi, H, Yoshida, K.: Time-optimal manipulator control of a free-floating space robot with constraint on reaction torque. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2828–2833. Nice (2008)

  14. Walker, M.W., Wee, L.-B.: Adaptive control of space-based robot manipulators. IEEE Trans. Robot. Autom. 7(4), 828–835 (1991)

    Article  Google Scholar 

  15. Abiko, S., Hirzinger, G.: Adaptive control for a torque controlled free-floating space robot with kinematic and dynamic model uncertainty. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2359–2364 (2009)

  16. Wang, H.: On adaptive inverse dynamics for free-floating space manipulators. Robot. Autonom. Syst. 59(8), 782–788 (2011)

    Article  Google Scholar 

  17. Xu, Y., You-Liang, G., Wu, Y., Sclabassi, R.: Robust control of free-floating space robot systems. Int. J. Control 61(2), 261–277 (1995)

    Article  MATH  Google Scholar 

  18. Pazelli, T.F., Terra, M.H., Siqueira, A.A.: Experimental investigation on adaptive robust controller designs applied to a free-floating space manipulator. Control Eng. Pract. 19(4), 395–408 (2011)

    Article  Google Scholar 

  19. Xu, G., Zhang, M., Wang, H.: Robust controller design for one arm space manipulator with uncertainties compensated. Lecture Notes Electr. Eng. Inf. Control Autom. Robot. Springer 133(2), 59–66 (2012)

    Google Scholar 

  20. Chen, Z., Chen, L.: Robust adaptive composite control of space-based robot system with uncertain parameters and external disturbances. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2353–2358 (2009)

  21. Aghili, F.: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Trans. Robot. Autom. 28(3), 634–649 (2012)

    Article  Google Scholar 

  22. Ma, O., Flores-Abad, A., Phan, K.: Control of a space robot for capturing a tumbling object international symposium on artificial intelligence. In: Robotics and Automation in Space. Turin (2012)

  23. Flores-Abad, A., Wie, Z., Ma, O., Phan, K.: Optimal control of space robots for capturing a tumbling object with uncertainties. J. Guid. Control Dyn. 37(6), 1–4 (2014)

    Article  Google Scholar 

  24. Nanos, K., Papadopoulos, E.: On the use of free-floating space robots in the presence of angular momentum. Intel. Serv. Robot. 4(1), 3–15 (2011)

    Article  Google Scholar 

  25. Masutani, Y., Iwatsu, T., Miyazaki, F.: Motion estimation of unknown rigid body under no external forces and moments. In: IEEE International Conference on Robotics and Automation, pp. 1066–1072. San Diego (1994)

  26. Xu, W., Liang, B., Li, C., Liu, Y., Xu, Y.: Autonomous target capturing of free-floating space robot: Theory and experiments. Robotica 27, 425–445 (2009)

    Article  Google Scholar 

  27. Aghili, F., Kuryllo, M., Okouneva, G., English, C.: Fault-tolerant position/attitude estimation of free-floating space objects using a laser range sensor. IEEE Sensors J. 11(1), 176–185 (2011)

    Article  Google Scholar 

  28. Petit, A., Marchand, E., Kanani, K.: Tracking complex targets for space rendezvous and debris removal applications. IEEE/RSJ Int. Conf. Intel. Robots Syst., 4483–4488 (2012)

  29. Xu, Y., Kanade, T. (eds.): Space Robotics: Dynamics and Control. Kluwer Academic Publishers (1993)

  30. Shah, S.V., Saha, S.K., Dutt, J.K.: Dynamics of tree-type robotic systems. In: Intelligent Systems, Control and Automation: Science and Engineering Bookseries. Springer, http://www.redysim.co.nr/ [cited September 17 2016.] (2013)

  31. Hanßmann, H.: Quasi-periodic motion of a rigid body under weak forces. In: Hamiltonian Systems with Three or More Degrees of Freedom, pp. 398–402. Springer Netherlands (1999)

  32. Kuang, J., Tan, S., Arichandran, K., Leung, A.Y.T.: Chaotic attitude motion of gyrostat satellite via Melnikov method. Int. J. Bifur. Chaos 11(05), 1233–1260 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Masteron-Gibbons, M.: A Primer of the Calculus of Variation and Optimal Control Theory. American Mathematical Society, USA (2009)

    Google Scholar 

  34. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics. Chapman and Hall/CRC, London (1996)

    MATH  Google Scholar 

  35. Espero, M.T.: Future Space Robotics and Large Optical Systems: A Picture of Orbital Express. Ares V Workshop, California (2008)

    Google Scholar 

  36. Rutquist, P.E., Edvall, M.M.: Propt-Matlab Optimal Control Software. Tomlab Optimization Inc (2010)

  37. Neal, R.M.: Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation. Learn. Graph. Models Springer 89, 205–228 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Flores-Abad.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10846-016-0439-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Abad, A., Zhang, L., Wei, Z. et al. Optimal Capture of a Tumbling Object in Orbit Using a Space Manipulator. J Intell Robot Syst 86, 199–211 (2017). https://doi.org/10.1007/s10846-016-0417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0417-1

Keywords

Navigation