Skip to main content
Log in

Optimal Navigation for a Differential Drive Disc Robot: A Game Against the Polygonal Environment

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper considers the problem of globally optimal navigation with respect to minimizing Euclidean distance traveled by a disc-shaped, differential-drive robot (DDR) to reach a landmark. The robot is equipped with a gap sensor, which indicates depth discontinuities and allows the robot to move toward them. In this work we assume that a topological representation of the environment called GNT has already been built, and that the landmark has been encoded in the GNT. A motion strategy is presented that optimally navigates the robot to any landmark in the environment, without the need of using a previously known geometric map of the environment. To our knowledge this is the first time that the shortest path for a DDR (underactuated system) is found in the presence of obstacle constraints without knowing the complete geometric representation of the environment. The robot’s planner or navigation strategy is modeled as a Moore Finite State Machine (FSM). This FSM includes a sensor-feedback motion policy. The motion policy is based on the paradigm of avoiding the state estimation to carry out two consecutive mappings, that is, from observation to state and then from state to control, but instead of that, there is a direct mapping from observation to control. Optimality is proved and the method is illustrated in simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P. K., Biedl, T., Lazard, S., Robbins, S., Suri, S., Whitesides, S.: Curvature-Constrained Shortest Paths in a Convex Polygon. SIAM J. Comput. 31(6), 1814–1851 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balkcom, D. J., Mason, M.T.: Time optimal trajectories for bounded velocity differential drive vehicles. Int J. of Robotics Research 21(3), 199–217 (2002)

    Article  Google Scholar 

  3. Bicchi, A., Casalino, G., Santilli, C.: Planning shortest bounded-curvature paths for a class of nonholonomic vehicles among obstacles. J. of Intelligent Robots Syst. 16(4), 387–405 (1996)

    Article  Google Scholar 

  4. Bilò, D., Disser, Y., Mihalák, S. Suri M., Vicari, E., Widmayer, P.: Reconstructing visibility graphs with simple robots. Theor. Comput. Sci. 444, 52–59 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobadilla, L., Martinez, F., Gobst, E., Gossman, K., LaValle, S. M.: Controlling wild mobile robots using virtual gates and discrete transitions. In: Proceedings of American Control Conference, pp 743–749 (2012)

  6. Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 19(5), 1179–1187 (1989)

    Article  Google Scholar 

  7. Canny, J., Reif, J.: New lower bound techniques for robot motion planning problems. In: Proceedings of IEEE Symposium on Foundations of Computer Science, pp 49–60 (1987)

  8. Chen, D.Z., Wang, H.: Paths among curved obstacles in the plane. In: Proceedings of Computing Research Repository (2011)

  9. Chew, L.P.: Planning the shortest path for a disc in O(n 2 l o g n) time. In: Proceedings ACM Symposium on Computational Geometry (1985)

  10. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd Ed Springer-Verlag (2000)

  11. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  12. Ghosh, S.K.: Visibility algorithms in the plane cambridge university press (2007)

  13. Ghosh, S.K., Mount, D.M.: An output sensitive algorithm for computing visibility graphs. In: Proceedings of IEEE Symposium on Foundations of Computer Science, pp 11–19 (1987)

  14. Guilamo, L., Tovar, B., LaValle, S.M.: Gap Navigation Trees: Minimal Representation for Visibility-based Tasks. In: Erdmann, M., etal. (eds.) Proceedings of the Tenth Workshop on the Algorithmic Foundations of Robotics: Springer Tracts in Advanced Robotics, pp 425–440 (2004)

  15. Hayet, Carlos, H., Esteves, C., Murrieta-Cid, R.: Motion planning for maintaining landmarks visibility with a differential drive robot. Robot. Auton. Syst. 4(62), 456–473 (2014)

    Article  Google Scholar 

  16. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5 (1), 90–98 (1986)

    Article  Google Scholar 

  17. Kolling, A., Carpin, S.: Extracting surveillance graphs from robot maps. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 11–19 (2008)

  18. Laguna, G., Murrieta-Cid, R., Becerra, H. M., Lopez-Padilla, R., LaValle, S.M.: Exploration of an unknown environment with a differential drive disc robot. In: Proceedings of IEEE Int. Conf. on Robotics and Automation, pp 2527–2533 (2014)

  19. Landa, Y., Tsai, R.: Visibility of point clouds and exploratory path planning in unknown environments. Commun. Math. Sci. 6(4), 881–913 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laumond, J. -P., Jacobs, P. E., Taïx, M., Murray, R.M.: A motion planner for nonholonomic mobile robots. IEEE Trans. Robot. Autom. 10(5), 577–593 (1994)

    Article  Google Scholar 

  21. LaValle, S.M.: Sensing and filtering: A fresh perspective based on preimages and information spaces. In: Foundations and Trends in Robotics Series. Now Publishers, Delft, The Netherlands (2012)

  22. Lavalle, S.M.: Planning Algorithms, Cambridge University Press (2006)

  23. LaValle, S. M.: Robot motion planning: a game-theoretic foundation. Algorithmica 26(3-4), 430–465 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Y., Arimoto, S.: Finding the shortest path of a disc among polygonal obstacles using a radius-independent graph. IEEE Trans. Robot. 11(5), 682–691 (1995)

    Article  Google Scholar 

  25. Lopez-Padilla, R., Murrieta-Cid, R., LaValle, S.M.: Optimal gap navigation for a disc robot. In: Frazzoli, E., etal. (eds.) Proceedings of the Tenth Workshop on the Algorithmic Foundations of Robotics: Springer Tracts in Advanced Robotics, pp 123–138 (2013)

  26. Mikawa, M., Morimoto, Y., Tanaka, K.: Guidance method using laser pointer and gestures for librarian robot. In: Proceedings of IEEE Int. Conf. on Robot and Human Interactive Communication, pp 416–419 (2011)

  27. Minguez, J., Montano, L.: Nearness diagram (nd) navigation: collision avoidance in troublesome scenarios. IEEE Trans. Robot. Autom. 20(1), 45–59 (2004)

    Article  Google Scholar 

  28. Mitchell, J. S. B.: Shortest paths and networks. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. 2nd Ed, pp 607–641 (2004)

  29. Mitchell, J. S. B., Papadimitriou, C. H.: The weighted region problem. J. ACM 38, 18–73 (1991)

    Article  MATH  Google Scholar 

  30. Murphy, L., Newman, P.: Using incomplete online metric maps for topological exploration with the gap navigation tree. In: Proceedings of IEEE Int. Conf. on Robotics and Automation, pp 2792–2797 (2008)

  31. Reeds, J. A., Shepp, L. A.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  32. Reif, J. H., Sun, Z.: An efficient approximation algorithm for weighted region shortest path problem. In: Donald, B. R., Lynch, K. M., Rus, D. (eds.) Algorithmic and Computational Robotics: N,ew Directions, pp 191–203 (2001)

  33. Soueres, P., Laumond, J. -P.: Shortest paths synthesis for a car-like robot. IEEE Trans. Autom. Control 41(5), 672–688 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stillwell, J.: The four pillars of geometry springer (2005)

  35. Ta, H., Kim, D, Lee, S.: A novel laser line detection algorithm for robot application. In: Proceedings of Int Conf. on Control, Automation and Systems, pp 361–365 (2011)

  36. Taylor, C. J., Kriegman, D.: Vision-based motion planning and exploration algorithms for mobile robots. IEEE Trans. Robot. Autom. 14(3), 417–426 (1998)

    Article  Google Scholar 

  37. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics MIT press (2005)

  38. Tovar, B., LaValle, S. M., Murrieta, R.: Optimal Navigation and Object Finding without Geometric Maps or Localization. In: Proceedings of IEEE Int. Conf. on Robotics and Automation, pp 464–470 (2003)

  39. Tovar, B., Murrieta-Cid, R., LaValle, S. M.: Distance-optimal navigation in an unknown environment without sensing distances. IEEE Trans. Robot. 23(3), 506–518 (2007)

    Article  Google Scholar 

  40. Wang, H., Chen, Y., Soueres, P.: A geometric algorithm to compute time-optimal trajectories for a bidirectional steered robot. IEEE Trans. Robot. 25(2), 399–413 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. LaValle.

Additional information

A preliminary version of portions of this work has been presented at the Tenth International Workshop on the Algorithmic Foundations of Robotics, WAFR 2012 [25] . This work was supported in part by NSF grants 0904501 (IIS Robotics) and 1035345 (Cyberphysical Systems), DARPA SToMP grant HR0011-05-1-0008, and MURI/ONR grant N00014-09-1-1052.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Padilla, R., Murrieta-Cid, R., Becerra, I. et al. Optimal Navigation for a Differential Drive Disc Robot: A Game Against the Polygonal Environment. J Intell Robot Syst 89, 211–250 (2018). https://doi.org/10.1007/s10846-016-0433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0433-1

Keywords

Navigation