Skip to main content
Log in

Globally Stabilizing a Class of Underactuated Mechanical Systems on the Basis of Finite-Time Stabilizing Observer

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Globally exponentially stabilizing a class of underactuated mechanical systems (UMS) with nonaffine nonlinear dynamics is investigated in this paper. The considered UMS has a nonaffine nonlinear subsystem that can be globally asymptotically stabilized by saturated feedbacks, but the saturated feedback cannot be analytically expressed in closed-form. This obstacle limits the real-time applications of most controllers presented in literatures. In this paper, a hybrid feedback strategy is presented to globally exponentially stabilize the UMS with nonaffine and strict-feedback canonical forms. The hybrid feedback strategy is characterized by the composition of partial states feedback and partial virtual outputs feedback based on a higher-order finite-time stabilizing observer. The presented hybrid feedback controller can be synthesized by applying Lyapunov stability theory. Some numerical simulations associated with two underactuated nonlinear systems, the Acrobot system and the Inertia-Wheel-Pendulum (IWP) system, are employed to demonstrate the effectiveness of the proposed controller. The presented control strategy can be applied in real time, thus providing a new feasible dynamic model other than the differential flatness systems for synthesizing the mechanical systems of general underactuated legged robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Khalil, H.K.: Nonlinear systems. Publishing house of electronics industry, Beijing (2002)

    MATH  Google Scholar 

  2. He, G., Geng, Z.: Dynamics and Robust Control of an Underactuated Torsional Vibratory Gyroscope Actuated by Electrostatic Actuator. IEEE/ASME Trans. Mechatron. (2014). doi:10.1109/TMECH.2014.2350535

    Google Scholar 

  3. Teel, A.R.: A Nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans. Autom. Control 41(9), 1256–1270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mazenc, F., Mondie, S., Francisco, R.: Global asymptotic stabilization of feedforward systems with delay in the input. IEEE Trans. Autom. Control 49(5), 844–850 (2004)

    Article  MathSciNet  Google Scholar 

  5. Lin, W.: Global asymptotic stabilization of general nonlinear systems with stable free dynamics via passivity and bounded feedback. Automatica 32(6), 915–924 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shapiro, B., Kissel, J., Mavalvala, N., Strain, K., Youcef-Toumi, K.: Limitations of Underactuated Modal Damping for Multistage Vibration Isolation Systems. IEEE/ASME Trans. Mechatron. 20(1), 393–404 (2015)

    Article  Google Scholar 

  7. Olfati-Saber, R.: Normal forms for underactuated mechanical systems with symmetry. IEEE Trans. Autom. Control 47(2), 305–308 (2002)

    Article  MathSciNet  Google Scholar 

  8. Li, J., Qian, C.: Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems. IEEE Trans. Autom. Control 51(5), 879–884 (2006)

    Article  MathSciNet  Google Scholar 

  9. Moulay, E., Perruquent, W.: Stabilization of nonaffine systems: a constructive method for polynomial systems. IEEE Trans. Autom. Syst. 50(4), 520–526 (2005)

    Article  MathSciNet  Google Scholar 

  10. Zhao, Y., Farrell, J.A.: Locally weighted online approximation-based control for nonaffine systems. IEEE Trans. Neural Netw. 18(6), 1709–1723 (2007)

    Article  Google Scholar 

  11. Dong, W., Zhao, Y., Chen, Y., Farrell, J.A.: Tracking control for nonaffine systems: a self-organizing approximation approach. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 223–235 (2012)

    Article  Google Scholar 

  12. Na, B., Kong, K.: Control Power Reduction and Frequency Bandwidth Enlargement of Robotic Legs by Nonlinear Resonance. IEEE/ASME Trans. Mechatron. (2015). doi:10.1109/TMECH.2014.2376564

    Google Scholar 

  13. Schultz, G., Mombaur, K.: Modeling and optimal control of Human-Like running. IEEE/ASME Trans. Mechatron. 15(5), 783–792 (2010)

    Article  Google Scholar 

  14. Tlalolini, D., Chevallereau, C., Aoustin, Y.: Human-Like Walking: Optimal motion of a bipedal robot with Toe-Rotation motion. IEEE/ASME Trans. Mechatron. 16(2), 310–320 (2011)

    Article  Google Scholar 

  15. He, G., Geng, Z.: Dynamics synthesis and control for a hopping robot with articulated leg. Mech. Mach. Theory 46, 1669–1688 (2011)

    Article  Google Scholar 

  16. Sangwan, V., Agrawal, S.K.: Differentially Flat Design of Bipeds Ensuring Limit Cycles. IEEE/ASME Trans. Mechatron. 14(6), 647–657 (2009)

    Article  Google Scholar 

  17. Lai, X., She, J., Yang, S.X., Wu, M.: Comprehensive unified control strategy for underactuated two-link manipulators. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(2), 389–398 (2009)

    Article  MATH  Google Scholar 

  18. Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)

    Article  MathSciNet  Google Scholar 

  19. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles, Massachusetts Institute of Technology Doctor Dissertation (2001)

  20. Xu, L., Hu, Q.: Output-feedback stabilization control for a class of underactuated mechanical systems. IET Control Theory Appl. 7(7), 985–996 (2013)

    Article  MathSciNet  Google Scholar 

  21. He, G., Geng, Z.: Finite-time stabilization of a comb-drive electrostatic microactuator. IEEE/ASME Trans. Mechatron. 17(1), 107–115 (2012)

    Article  Google Scholar 

  22. Huang, X., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41, 881–888 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bhat, S.P., Bernstein, D.S: Finite-Time Stability of Continuous Autonomous Systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Levant, A.: Higher-order sliding modes, differentiation and output feedback control. Int. J. Control. 76(9), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Esfandiari, F., Khalil, H.K.: Output feedback stabilization of fully linearizable systems. Int. J. Control. 56, 1007–1037 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khalil, H.K.: A note on the robustness of high-gain-observer-based controllers to unmodeled actuator and sensor dynamics. Automatica 41, 1821–1824 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Atassi, A.N., Khalil, H.K.: A separation principle for the control of a class of nonlinear systems. IEEE Trans. Autom. Control 46(5), 742–746 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hong, Y., Wang, J., Xi, Z.: Stabilization of uncertain chained form systems within finite setting time. IEEE Trans. Autom. Control 50(9), 1379–1384 (2005)

    Article  Google Scholar 

  29. Sira-Ramirez, H., Agrawal, S.K.: Differentially flat systems. Marcel Dekker, Inc., New York Basel (2004)

    MATH  Google Scholar 

  30. Spong, M.W., Corke, P., Lozano, R.: Nonlinear control of the Inertia Wheel Pendulum. Automatica 37(11), 1845–1851 (2001)

    Article  MATH  Google Scholar 

  31. Sun, N., Fang, Y., Zhang, Y., Ma, B.: A Novel Kinematic Coupling-Based Trajectory Planning Method for Overhead Cranes. IEEE/ASME Trans. Mechatron. 17(1), 166–173 (2012)

    Article  Google Scholar 

  32. Agrawal, S.K., Fattah, A.: Motion control of a novel planar biped with nearly linear dynamics. IEEE/ASME Trans. Mechatron. 11(2), 162–168 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Chen, R. & Zhang, Y. Globally Stabilizing a Class of Underactuated Mechanical Systems on the Basis of Finite-Time Stabilizing Observer. J Intell Robot Syst 86, 353–366 (2017). https://doi.org/10.1007/s10846-016-0446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0446-9

Keywords

Navigation