Skip to main content
Log in

Aerophysics Interpreting Its Potential Pilot Physiology

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

When a human pilot operates an unmanned aerial vehicle (UAV), there is a brain body and vision (physiological) coordination taking place between the human and the aircraft. Mainly, the UAV control-position-orientation interactions, referred as the aerophysics (similar to biophysics) take place due to pilot’s physiological interventions. In this context, it becomes important to connect neural network based UAV control, camera vision based sensing, etc., with physiology. A specific problem associated with physiology is obstacle avoidance. When an obstacle is sensed, the human brain instantly dumps the existing thoughts that would steer the vehicle to collide with the obstacle’s geospatial position. Then, other positions are reconfigured to avoid the obstacle for which the UAV is steered with biostability (stable transcriptions of the reconfigurable controllers). Since the controllers are linear, they should be capable of handling the nonlinear UAV at decision points where reconfiguration takes place. In this paper, such nonlinear trajectories with transcriptions at decision points to reconfigure a set of geospatial coordinates are considered. Then tools to interpret potential human physiology that would establish neural networks and camera vision connections are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kramer, S., Martin, C., Robert, R.C.: Direct optimization of gain scheduled controllers via genetic algorithms. J. Guid. Control. Dyn. 19(3), 636–642 (1996). doi:10.2514/3.21668

    Article  Google Scholar 

  2. Altay, A., Ozkan, O., Kayakutlu, G.: Prediction of aircraft failure times using artificial neural networks and genetic algorithms. J. Aircr. 51(1), 47–53 (2014). doi:10.2514/1.C031793

    Article  Google Scholar 

  3. Sarthak, K., Manish, K., Kelly, C.: Genetically Tuned LQR Based Path Planning for UAVs under Wind Disturbance. In: IEEE International Conference on Unmanned Aircraft Systems, Arlington, Virginia, USA (2016)

  4. Sasiadek, J., Mark Walker, M.: Vision-Based UAV Navigation. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii AIAA 2008 -6667. doi:10.2514/6.2008-6667

  5. Frew, E., Gerritsen, T., Pledgie, S., Brinton, C., Patel, S., Schwartz, B.: Vision-Based Navigation for Airfield Surface Operation. In: AIAA Guidance, Navigation and Control Conference, pp. 2008–7320. AIAA, Honolulu, Hawaii. doi:10.2514/6.2008-7320

  6. Troudet, T., Garg, S., Merrill, W.: Neural network application to aircraft control system design. In: AIAA Guidance, Navigation and Control Conference, New Orleans, LA, U.S.A. AIAA 91–2715-CP, doi:10.2514/6.1991-2715

  7. Tanaka, O., Chuang, C.-H.: Scheduling of linear controllers for X-29 by neural network and genetic algorithm. In: AIAA Guidance, Navigation, and Control Conference, Baltimore, MD, U.S.A. AIAA 95 3270-CP. doi:10.2514/6.1995-3270

  8. Sharma, M., Calise, A.: Neural-Network Augmentation of existing linear controllers. J. Guid. Control. Dyn. 28(1), 12–19 (2005)

    Article  Google Scholar 

  9. Napolitano, M., Kincheloe, M.: On-line Learning Neural-Network Controllers for Autopilot Systems. J. Guid. Control. Dyn. 18(5), 1008–1015 (1995). doi:10.2514/3.21498

    Article  Google Scholar 

  10. Li, Y, Sundararajan, N, Saratchandran, P: Stable Neuro-Flight-Controller using fully tuned radial basis function neural networks. J. Guid. Control. Dyn. 24(4), 665–674 (2001). doi:10.2514/2.4793

    Article  Google Scholar 

  11. Londner, E.H.: Collision Avoidance System Effectiveness on Low Performance Unmanned Aircraft, AIAA Infotech @ Aerospace, AIAA SciTech, San Diego, California, USA, AIAA 2016-1987. 10.2514/6.2016-1987

  12. Sampigethaya, R., Poovendran, R.: Enhancing ADS-B for Future UAV Operations, Infotech@Aerospace 2012, Infotech@Aerospace Conferences, Garden Grove, California, AIAA 2012–2420. doi:10.2514/6.2012-2420

  13. Martel, F., Schultz, R., Wang, Z., Czarnomski, M., Semke, W.: Unmanned Aircraft Systems Sense and Avoid Avionics Utilizing ADS-B Transceiver, AIAA Infotech@Aerospace Conference, Seattle, Washington, AIAA 2009-1923. doi:10.2514/6.2009-1923

  14. Khalil, H.K.: Nonlinear Systems, New Jersey: Prentice Hall, 2nd Edition 1996, ch. 3.3, p. 127

  15. Slotine, J.J., Li, W.: Applied nonlinear control, vol. 07458, pp 83–86. Prentice hall international inc., New Jersey (1991)

    Google Scholar 

  16. Ashokkumar, C.R., York, G.W.P.: Trajectory Transcriptions for Potential Autonomy Features in UAV Maneuvers. In: AIAA Guidance, Navigation, and Control Conference, pp 2016–0380. AIAA, San Diego, California (2016)

    Google Scholar 

  17. Ashokkumar, C.R., York, G.W.P.: UAV Control and Simulation Using Trajectory Transcriptions. In: AIAA Modeling and Simulation Technologies, pp 2016–0944. AIAA, San Diego, California (2016)

    Google Scholar 

  18. Oaks, Jr., O.J., Cook, G.: Piecewise linear control of nonlinear systems. IEEE Trans. Ind. Electron. Control. Instrum. IECI-23, 56–63 (1976)

    Article  Google Scholar 

  19. Fleming, E., Pritchett, A.: Training pilots for collision avoidance within a realistic operating context. Journal of aerospace information systems 12, 467–475 (2015). doi:10.2514/1.I010291. Special Issue on Aerospace Human-Automation Interaction

    Article  Google Scholar 

  20. Clough, B.T.: Relating Autonomy to a Task – Can it be Done?. In: AIAA 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, pp 2002–3445. AIAA, Portsmouth, Virginia (2002)

    Google Scholar 

  21. Wise, R.A., Rysdyk, R.T.: UAV Coordination for Autonomous Target Tracking. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp 2006–6453. AIAA, Keystone, Colorado (2006)

    Google Scholar 

  22. Freed, M., Harris, R., Shafto, M.S.: Hunan vs Autonomous Control of UAV Surveillance. In: AIAA 1st Intelligent Systems Technical Conference, pp 2004–6308. AIAA, Chicago, Illinois (2004)

    Google Scholar 

  23. Rubio, J.C., Vagners, J., Rysdyk, R.: Adaptive Path Planning for Autonomous UAV Ocean Search Mission. In: AIAA 1st Intelligent Systems Technical Conference, pp 2004–6228. AIAA, Chicago, Illinois (2004)

    Google Scholar 

  24. Maki, M., Ishikawa, K.: Autonomous Collision Avoidance for Mini UAV: Flying Through Mountain Corridor for Disaster Monitoring. In: AIAA Guidance, Navigation, and Control Conference, pp 2010–7732. AIAA, Toronto, Ontario, Canada (2010)

    Google Scholar 

  25. Nemati, A., Sarim, M., Hashemi, M., Schnipke, E., Reidling, S., Jeffers, W., Meiring, J., Sampathkumar, P., Kumar, M.: Autonomous Navigation of UAV Through GPS – Denied Indoor Environment with Obstacles, AIAA SciTech, 5-9 Kissimmee, Florida, AIAA Infotech@Aerospace AIAA 2015–0715 (2015)

  26. UAVs Perform Autonomous Search and Rescue Operations, Homeland Security News Wire 19th (2010)

  27. Hammerseth, V.B.: Autonomous unmanned aerial vehicle in search and rescue, master of science thesis, department of engineering cybernetics norwegian university of science and technology (2013)

  28. Green, W.E., Oh, P.Y.: Autonomous Hovering of a Fixed-Wing Micro Air Vehicle. In: The Proceedings of The 2006 IEEE International Conference on Robotics and Automation, pp 2164–2169, Orlando, Florida (2006)

  29. Mujumdar, A., Padhi, R.: Evolving philosophies on autonomous Obstacle/Collision avoidance of unmanned aerial vehicles. J. Aerosp. Comput. Inf. Commun. 8, 17–41 (2011)

    Article  Google Scholar 

  30. Yang, H.I., Zhao, Y.J.: Trajectory planning for autonomous aerospace vehicles and known obstacles and conflicts. J. Guid. Control. Dyn. 27(6), 997–1008 (2004)

    Article  Google Scholar 

  31. Zhu, R., Sun, D., Zhou, Z.: Integrated design of trajectory planning and control of micro air vehicles. Mechatronics 17, 245–253 (2007)

    Article  Google Scholar 

  32. Dever, C., Mettler, B., Feron, E., Popovic, J., Mcconley, M.C.: Nonlinear trajectory generation for autonomous vehicles via parameterized maneuver classes. J. Guid. Control. Dyn. 29(2), 289–302 (2006)

    Article  Google Scholar 

  33. Pelletier, M., Giroux, R.: Online Trajectory Generation for Autonomous VTOL – UAV Maneuvers. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp 2004–6308. AIAA, Denver, Colorado (2000)

    Google Scholar 

  34. Ashokkumar, C.R.: Trajectory generation in pitch plane. Proceedings of the IMechE: Journal of Aerospace Engineering 228(8), 1283–1290 (2014)

    Article  Google Scholar 

  35. Ashokkumar, C.R.: Kalman Filter for Autonomous MAV Operations in Pitch Plane. In: The Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Minneapolis, Minnesota, pp 2012–4705. AIAA (2012)

  36. Lawrence, D.A., Frew, E.W., Pisano, W.J.: Lyapunov Vector Fields for Autonomous Unmanned Aircraft Flight Control, vol. 31 (2008)

  37. Beard, R., Kingston, D., Quigley, M., Snyder, D., Christiansen, R., Johnson, W., McLain, T., Goodrich, M.A.: Autonomous Vehicle Technologies for Small Fixed-Wing UAVs. J. Aerosp. Comput. Inf. Commun. 2, 92–108 (2005)

    Article  Google Scholar 

  38. Rediess, H.A., Garg, S.: Autonomous civil aircraft –The future of aviation, Aerospace America, July 2006, pp. 40–43

  39. Balog, C.R.: Airbus vs Boeing: Whose automation philosophy is best?, Aerospace America, August 2015, pp. 17–35

  40. Kortunov, V.I.,Mazurenko, O.V., Gorbenko, A.V., Hussein, W.M.A.: Review and Comparative Analysis of Mini and Micro UAV Autopilots. In: 2015 IEEE 3rd International Conference Actual Problems of Unmanned Aerial Vehicles Development (APUAVD) Proceedings, pp. 284–289 (2015)

  41. Chao, H., Cao, Y., Chen, Y.Q.: Autopilots for Small Fixed-Wing Unmanned Air Vehicles: A Survey. In: The Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, pp 3144–3149, China (2007)

  42. Langelaan, J.W.: Gust Energy Extraction for Mini and Micro Uninhabited Aerial Vehicles. J. Guid. Control. Dyn. 32(2), 464–473 (2009). doi:10.2514/1.37735

    Article  Google Scholar 

  43. Gu, Y., Seanor, B., Campa, G., Napolitano, M.R., Rowe, L., Gururajan, S., Wen, S.: Design and flight testing evaluation of formation control laws. IEEE Trans. Control Syst. Technol. 14(6), 1105–1112 (2006)

    Article  Google Scholar 

  44. Campa, G., Gu, Y., Seanor, B., Napolitano, M.R., Pollini, L., Fravolini, M.L.: Design and flight testing of nonlinear formations control laws. Control. Eng. Pract. 15, 1077–1092 (2007)

    Article  Google Scholar 

  45. Jouili, K., Jerbi, H., Braick, N.B.: An advanced fuzzy logic gain scheduling trajectory control for nonlinear systems. J. Process Control 20(4), 426–440 (2010)

    Article  Google Scholar 

  46. Silvestre, C., Pascal, A., Kaminer, I.: On the design of gain scheduled trajectory tracking controllers. Int. J. Robust Nonlinear Control 12, 797–839 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Padhi, R., Gupta, A.: Dynamic Estimation of Obstacle Position with Vision Sensing for Reactive Collision Avoidance of UAVs, Journal of Aerospace Sciences and Technologies, pp. 187–200 (2012)

  48. Ashokkumar, C.R., York, G.W.P.: Observer Based Controllers for UAV Maneuver Options. In: The Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, AIAA-2016-0643 (2016)

  49. Ashokkumar, C.R., York, G.W.P., Gruber, S.F.: PID Controller Family for Pole Assignment, to appear, Proceedings of the IMechE: Journal ofMechanical Engineering Sciences

  50. Andy, A.N., Shapiro, E., Chung, J.C.: Eigenstructure assignment for linear systems. IEEE Trans. Aerosp. Electron. Syst. 19(5), 711–729 (1983)

    Article  Google Scholar 

  51. Anderson, B., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Prentice Hall, New Jersey (1990)

    MATH  Google Scholar 

  52. Kautsky, J., Nichols, N.K., Van Dooren, P.: Robust pole assignment in linear state feedback. Int. J. Control. 41, 1129–1155 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chimpalthradi R. Ashokkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashokkumar, C.R., York, G.W.P. Aerophysics Interpreting Its Potential Pilot Physiology. J Intell Robot Syst 88, 711–720 (2017). https://doi.org/10.1007/s10846-017-0523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0523-8

Keywords

Navigation