Skip to main content
Log in

A Bayesian based Methodology for Indirect Object Search

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The main goal of this paper is to propose a Bayesian based methodology for implementing robot informed search for objects. The methodology uses convolutions between observation likelihoods of secondary objects and spatial relation masks for estimating the probability map of the object being searched for, and also a search procedure that uses this probability map. A method for computing complex spatial relation masks by using a basis composed of basic relation masks and a database of co-occurrences of objects is used. Each basic relation mask corresponds to a qualitative spatial relation (QSR), such as: ‘very near’, ‘near’, or ‘far’. The search procedure takes into account the probability that the main object can be in different regions on the map and the distance to those regions. Also, the object search procedure is able to detect objects and generate new plans while moving. The proposed methodology is compared with uninformed and alternative informed search approaches using simulations and real-world experiments with a service robot. In simulations, the use of the proposed methodology increases the detection rate from 28% (direct uninformed search) to 79%, when the main object can be detected within a maximum distance of 1 meter. In the real world experiments, the use of the proposed methodology increases the detection rate from 40% (direct uninformed search) to 87% when using convolutions with soft masks, global search, and information on the positive detection of secondary objects. The detection rates obtained when using the proposed methodology are also much higher than those obtained by alternative informed search methods, both in the simulated and in the real-world experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Loncomilla, P., Saavedra, M., Ruiz-del-Solar, J.: Semantic object search using semantic categories and spatial relations between objects. In: RoboCup 2013: Robot World Cup XVII, pp. 516–527

  2. Loncomilla, P., Saavedra, M., Ruiz del Solar, J.: A Bayesian framework for informed search using convolutions between observation likelihoods and spatial relation masks. In: 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–8 (2013)

  3. Garvey, T.D.: Perceptual Strategies for Purposive Vision. Stanford University (1976)

  4. Kasper, A., Jäkel, R., Dillmann, R.: Using spatial relations of objects in real world scenes for scene structuring and scene understanding. In: Proceedings of the 15th International Conference on Advanced Robotics, pp. 421–426 (2011)

  5. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: KR’92 Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning, pp. 165–176 (1992)

  6. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. J. Fundamenta Informaticae - Qual. Spat. Reas. Archive 46(1–2), 1–29 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Cohn, A.G., Li, S., Liu, W., Renz, J.: Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects. J. Artif. Intell. Res. 51, 493–532 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Aydemir, A., Sjöö, K., Jensfelt, P.: Object search on a mobile robot using relational spatial information. In: Proceedings 11th International Conference on Intelligent Autonomous Systems, pp. 111–120 (2010)

  9. Aydemir, A., Sjöö, K., Folkesson, J., Pronobis, A., Jensfelt, P.: Search in the real world: Active visual object search based on spatial relations. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2818–2824 (2011)

  10. Kunze, L., Doreswamy, K.K., Hawes, N.: Using qualitative spatial relations for indirect object search. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 163–168 (2014)

  11. Kunze, L., Burbridge, C., Hawes, N.: Bootstrapping probabilistic models of qualitative spatial relations for active visual object search. In: AAAI Spring Symposium, pp. 24–26

  12. Li, J., Meger, D., Dudek, G.: Learning to generalize 3D spatial relationships. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5744–5749 (2016)

  13. Viswanathan, P., Meger, D., Southey, T., Little, J.J., Mackworth, A.: Automated spatialsemantic modeling with applications to place labeling and informed search. In: 2009 Canadian Conference on Computer and Robot Vision, pp. 284–291 (2009)

  14. Russell, B., Torralba, A., Murphy, K., Freeman, W.: Labelme: A database and web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173 (2008)

    Article  Google Scholar 

  15. Zhou, K., Zillich, M., Zender, H., Vincze, M.: Web mining driven object locality knowledge acquisition for efficient robot behavior. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3962–3969 (2012)

  16. Elfring, J., Jansen, S., van de Molengraft, R., Steinbuch, M.: Active object search exploiting probabilistic object-object relations. In: RoboCup 2013: Robot World Cup XVII, pp. 13–24 (2013)

  17. Riazuelo, L., Tenorth, M., Di Marco, D., Salas, M., Gálvez-López, D., Mösenlechner, L., Kunze, L., Beetz, M., Tardós, J. D., Montano, L., Martínez Montiel, J. M.: RoboEarth semantic mapping: A cloud enabled knowledge-based approach. IEEE Trans. Autom. Sci. Eng. 12(2) (2015)

  18. Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernandez-Madrigal, J. A., Gonzalez, J.: Multi-hierarchical semantic maps for mobile robotics. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2278–2283 (2005)

  19. Vasudevan, S., Gachter, S., Nguyen, V., Siegwart, R.: Cognitive maps for mobile robots-an object based approach. Robot. Auton. Syst. 55, 359–371 (2007)

    Article  Google Scholar 

  20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  21. Hanheide, M., Göbelbecker, M., Horn, G.S., Pronobis, A., Sjöö, K., Aydemir, A., Jensfelt, P., Gretton, C., Dearden, R., Janicek, M., Zender, H., Kruijff, G., Hawes, N., Wyatt, J. L.: Robot task planning and explanation in open and uncertain worlds. Artif. Intell. 247, 119–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wixson, L., Ballard, D.: Using intermediate object to improve efficiency of visual search. Int. J. Comput. Vis. 18 3, 209–230 (1994)

    Article  Google Scholar 

  23. Ye, Y., Tsotsos, J.K.: Sensor planning for 3D object search. Comput. Vis. Image Underst. 73–2, 145–168 (1999)

    Article  Google Scholar 

  24. Shubina, K., Tsotsos, J.: Visual search for an object in a 3d environment using a mobile robot. Comput. Vis. Image Underst. 114 5, 535–547 (2010)

    Article  Google Scholar 

  25. Aydemir, A., Pronobis, A., Gobelbecker, M., Jensfelt, P.: Active visual object search in unknown environments using uncertain semantics. IEEE Trans. Robot. 29(4) (2013)

  26. Ruiz-del-Solar, J., Loncomilla, P.: Robot head pose detection and gaze direction determination using local invariant features. Adv. Robot. 23(2009), 305–328 (2009)

    Article  Google Scholar 

  27. Martinez, L., Loncomilla, P., Ruiz del Solar, J.: Object recognition for manipulation tasks in real domestic settings: A comparative study. In: RoboCup 2014: Robot World Cup XVIII, pp. 207–219 (2015)

  28. Loncomilla, P., Ruiz-del-Solar, J., Martinez, L.: Object recognition using local invariant features for robotic applications: A survey. Pattern Recog. 60, 499–514 (2016)

    Article  Google Scholar 

  29. Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta*: Any-angle path planning on grids. In: AAAI’07 Proceedings of the 22nd National Conference on Artificial Intelligence, vol. 2, pp. 1177–1183 (2007)

  30. Vaughan, R.T., Gerkey, B.P.: Reusable robot code and the player/stage project. In: Brugali, D. (ed.) Software Engineering for Experimental Robotics, ser. Springer Tracts on Advanced Robotics, pp 267–289. Springer (2007)

  31. Ludwig, O., Delgado, D., Goncalves, V., Nunes, U.: Trainable classifier-fusion schemes: an application to pedestrian detection. In: Proc. of the 12th Int. IEEE Conf. on Intell. Transportation Systems, vol. 1, pp. 432–437. St. Louis (2009)

  32. Ruiz-del-Solar, J., Correa, M., Verschae, R., Bernuy, F., Loncomilla, P., Mascaró, M., Riquelme, R., Smith, F.: Bender – a general-purpose social robot with human-robot interaction abilities. J. Human – Robot Interact. 1(2), 54–75 (2012)

    Google Scholar 

  33. Martinez, L., Matias P., Olave, G., Correa, M., Sanchez, L., Loncomilla, P., Ruiz-del-Solar, J.: UChile HomeBreakers 2015 Team Description Paper. Universidad de Chile, http://bender.li2.uchile.cl/Files/TDP/UChileHomeBreakers_TDP2015.pdf. Accessed 22 September 2017 (2015)

Download references

Acknowledgments

This work was partially funded by Fondecyt Project 1130153 and Fondecyt Project 1161500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Loncomilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loncomilla, P., Ruiz-del-Solar, J. & Saavedra A., M. A Bayesian based Methodology for Indirect Object Search. J Intell Robot Syst 90, 45–63 (2018). https://doi.org/10.1007/s10846-017-0643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0643-1

Keywords

Navigation