Skip to main content
Log in

Iterative Decentralized Planning for Collective Construction Tasks with Quadrotors

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper describes an iterative decentralized planning and learning method, based on stochastic learning automata theory and heuristic search techniques, to generate construction and motion strategies to build different types of three-dimensional structures using multiple quadrotors. This architecture is proposed to simultaneously solve three main problems: 1) the iterative generation of feasible construction and motion plans for each quadrotor; 2) the optimization with constraints on power and assembly while taking into account the dynamic nature of the environment, and 3) the planning of the translational speeds and selection of breakpoints for each vehicle. The quadrotors learn the optimal action policy to construct the structures while avoiding collisions during the loading and unloading procedures. In order to demonstrate the generality of the solution, simulated trials of the proposed autonomous construction system are presented where different three-dimensional structures are built.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolger, A., Faulkner, M., Stein, D., White, L., Yun, S.-K., Rus, D.: Experiments in decentralized robot construction with tool delivery and assembly robots. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5085–5092 (2010)

  2. Detweiler, C., Vona, M., Yoon, Y., Yun, k.S., Rus, D.: Self-assembling mobile linkages. IEEE Robot. Autom. Mag. 14(4), 45–55 (2007)

    Article  Google Scholar 

  3. Groover, M.P.: Automation, Production Systems, Computer-Integrated Manufacturing, 3rd edn. Prentice-Hall, Inc., New Jersey (2007)

  4. Heger, F.W.: Assembly planning in constrained environments: Building structures with multiple mobile robots. Ph.D. thesis, Carnegie Mellon University, Pittsburgh (2010)

    Google Scholar 

  5. Jimenez-Cano, A.E., Martin, J., Heredia, G., Ollero, A., Cano, R.: Control of an aerial robot with multi-link arm for assembly tasks. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4916–4921. https://doi.org/10.1109/ICRA.2013.6631279 (2013)

  6. Knepper, R.A., Layton, T., Romanishin, J., Rus, D.: Ikeabot: An autonomous multi-robot coordinated furniture assembly system. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 855–862 (2013)

  7. Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Auton. Robot. 33(3), 323–336 (2012)

    Article  Google Scholar 

  8. Lowe, G., Shirinzadeh, B.: Dynamic assembly sequence selection using reinforcement learning. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2004. ICRA ’04, vol. 3, pp. 2633–2638. https://doi.org/10.1109/ROBOT.2004.1307458 (2004)

  9. Magnenat, S., Philippsen, R., Mondada, F.: Autonomous construction using scarce resources in unknown environments. Auton. Robot. 33(4), 467–485 (2012)

    Article  Google Scholar 

  10. de Mello, L.S.H.: Sequence planning for robotic assembly of tetrahedral truss structures. IEEE Trans. Syst. Man Cybern. 25(2), 304–312 (1995)

    Article  Google Scholar 

  11. Munoz-Morera, J., Maza, I., Fernandez-Aguera, C.J., Caballero, F., Ollero, A.: Assembly planning for the construction of structures with multiple UAS equipped with robotic arms. In: International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 1049–1058. https://doi.org/10.1109/ICUAS.2015.7152396 (2015)

  12. Narendra, K.S., Thathachar, M.A.L.: Learning automata: An introduction. Prentice-Hall, Inc., New Jersey (1989)

    MATH  Google Scholar 

  13. Nelson, B.J., Papanikolopoulos, N.P., Khosla, P.K.: Robotic visual servoing and robotic assembly tasks. IEEE Robot. Autom. Mag. 3(2), 23–31 (1996)

    Article  Google Scholar 

  14. Panangadan, A., Dyer, M.G.: Construction in a simulated environment using temporal goal sequencing and reinforcement learning. Adapt. Behav. 17(1), 81–104 (2009). https://doi.org/10.1177/1059712308101787. http://adb.sagepub.com/content/17/1/81.abstract

    Article  Google Scholar 

  15. Paulos, J., Eckenstein, N., Tosun, T., Seo, J., Davey, J., Greco, J., Kumar, V., Yim, M.: Automated self-assembly of large maritime structures by a team of robotic boats. IEEE Trans. Autom. Sci. Eng. 12 (3), 958–968 (2015). https://doi.org/10.1109/TASE.2015.2416678

    Article  Google Scholar 

  16. dos Santos, S.R.B., Givigi, S.N., Júnior, C.L.N.: An experimental validation of reinforcement learning applied to the position control of uavs. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2796–2802. https://doi.org/10.1109/ICSMC.2012.6378172 (2012)

  17. dos Santos, S.R.B., Givigi, S.N.: Nascimento, C.L.: Autonomous construction of multiple structures using learning automata: Description and experimental validation. IEEE Syst. J. 9(4), 1376–1387 (2015). https://doi.org/10.1109/JSYST.2014.2374334

    Article  Google Scholar 

  18. dos Santos, S.R.B., Júnior, C.L.N., Givigi, S.N.: Planning and learning for cooperative construction task with quadrotors. In: 8th Annual IEEE Systems Conference (SysCon), 2014, pp. 57–64. https://doi.org/10.1109/SysCon.2014.6819236 (2014)

  19. Silver, D.: Cooperative pathfinding. In: Proceeding of the AAAI, pp. 117–122 (2005)

  20. Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: Proceeding of the AAAI, pp. 173–178 (2010)

  21. Stroupe, A., Huntsberger, T., Okon, A., Aghazarian, H., Robinson, M.: Behavior-based multi-robot collaboration for autonomous construction tasks. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005), pp. 1495–1500. https://doi.org/10.1109/IROS.2005.1545269 (2005)

  22. Thathachar, M.A.L., Sastry, P.S.: Networks of Learning Automata: Techniques for Online Stochastic Optimization. Kluwer Academic Publishers, New York (2004)

    Book  Google Scholar 

  23. Tolley, M.T., Lipson, H.: On-line assembly planning for stochastically reconfigurable systems. Int. J. Robotics Res. 30(13), 1566–1584 (2011). https://doi.org/10.1177/0278364911398160. http://ijr.sagepub.com/content/30/13/1566.abstract

    Article  Google Scholar 

  24. Wawerla, J., Sukhatme, G.S., Mataric, M.J.: Collective construction with multiple robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, vol. 3, pp. 2696–2701 vol.3 (2002)

  25. Werfel, J.: Building blocks for multi-robot construction, pp 285–294. Springer Japan, Tokyo (2007)

    Google Scholar 

  26. Werfel, J., Ingber, D., Nagpal, R.: Collective construction of environmentally-adaptive structures. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 2345–2352. https://doi.org/10.1109/IROS.2007.4399462 (2007)

  27. Werfel, J., Nagpal, R.: Extended stigmergy in collective construction. IEEE Intell. Syst. 21(2), 20–28 (2006). https://doi.org/10.1109/MIS.2006.25

    Article  Google Scholar 

  28. Werfel, J., Nagpal, R.: Three-dimensional construction with mobile robots and modular blocks. Int. J. Robot. Res. 27(3-4), 463–479 (2008). https://doi.org/10.1177/0278364907084984. http://ijr.sagepub.com/content/27/3-4/463.abstract

    Article  Google Scholar 

  29. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014). https://doi.org/10.1126/science.1245842

    Article  Google Scholar 

  30. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007). https://doi.org/10.1109/MRA.2007.339623

    Article  Google Scholar 

  31. Yun, S.K., Rus, D.: Adaptive coordinating construction of truss structures using distributed equal-mass partitioning. IEEE Trans. Robot. 30(1), 188–202 (2014)

    Article  Google Scholar 

  32. Zheng, T., Zhao, X.: Research on optimized multiple robots path planning and task allocation approach. In: IEEE international conference on robotics and biomimetics, 2006. ROBIO ’06, pp. 1408–1413. https://doi.org/10.1109/ROBIO.2006.340135 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney Givigi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros dos Santos, S.R., Givigi, S., Nascimento, C.L. et al. Iterative Decentralized Planning for Collective Construction Tasks with Quadrotors. J Intell Robot Syst 90, 217–234 (2018). https://doi.org/10.1007/s10846-017-0659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0659-6

Keywords

Navigation