Skip to main content

Advertisement

Log in

The Performance Indices Optimization of a Symmetrical Fully Spherical Parallel Mechanism for Dimensional Synthesis

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The 3(UPS)-S fully spherical parallel manipulator is the most famous fully spherical parallel robot. Therefore, dimensional synthesis of the manipulator to optimize kinematics and dynamic performance indices is very important. In this paper, we proposed a new kinematics index that is called global workspace conditioning index (GWCI). This index is a suitable criteria to compare workspace of the spherical parallel manipulators. Using this index, and other performance indices such as; Global Conditioning Index (GCI), Global Gradient Index (GGI) and Dynamic Dexterity Index (DDI), we optimize dimensions of the manipulator based on single and multi-objective optimizations. Two dimensionless design parameters are advised to obtain an optimal solution. The manipulator is optimized with regard to the joints constraint and range of motion actuators as functions of the design parameters. For this purpose, we elaborate kinematics analyses and also obtain the mass matrix of the manipulator using its kinetic energy. Next, single-objective optimizations based on Genetic Algorithm (GA) and Pattern Search (PS) are presented. The comparison between GA and PS in the single-objective optimization shows that the accuracy of both methods is rather equal, but in elapsed time PS is better than GA. Finally, multi-objective evolutionary algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the true optimal solutions and Pareto fronts. The obtained solution will be a set of optimal geometric parameters to adjust the dynamic and the kinematic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunt, K. H.: Structural kinematics of in-parallel-actuated robot-arms. Trans. ASME J. Mech. Trans. Autom. Des. 105, 705 (1983)

    Article  Google Scholar 

  2. Merlet, J. P.: Force feedback control of parallel manipulators. In: IEEE Int. Conf. on Robotics and Automation, pp. 1484–1489. Philadelphia, PA, https://doi.org/10.1109/ROBOT.1988.12277 (1988)

  3. Sklar, M., Tesar, D.: Dynamic analysis of hybrid serial manipulator systems contain parallel modules. ASME J. Dynam. Meas. Contr. 110, 109–115 (1988)

    Article  Google Scholar 

  4. Miller, K.: Optimal design and modeling of spatial parallel manipulators. Int. J. Robot. Res. 23(2), 127–140 (2004)

    Article  Google Scholar 

  5. Zhang, Y., Yao, Y.: inematic optimal design of 6-UPS parallel manipulator. In: Proceedings 2006 IEEE International Conference on Mechatronics and Automation, pp. 23412345, Luoyang, Henan, https://doi.org/10.1109/ICMA.2006.257697 (2006)

  6. Kurtz, R., Hayward, V.: Multiple-goal kinematic optimization of parallel spherical mechanism with actuator redundancy. IEEE Trans. Robot. Autom. 8(5), 644–651 (1992)

    Article  Google Scholar 

  7. Kelaiaia, R., Company, O, Zaati, A: Multi-objective optimization of parallel kinematic mechanisms by the genetic algorithms. Robotica 30(5), 783–797 (2012)

    Article  Google Scholar 

  8. Song, Y., Gao, H., Sun, T., Dong, G., Lian, B., Qi, Y.: Kinematic analysis and optimal design of a novel 1T3R parallel manipulator with an articulated travelling plate. J. Robot. Comput.-Integrated Manuf. 30(5), 508–516 (2014)

    Article  Google Scholar 

  9. Song, Y., Lian, B., Sun, T., Dong, G., Qi, Y., Gao, H.: A novel five-degree-of-freedom parallel manipulator and its kinematic optimization. J. Mech. Robot. 6(4), 410081–410089 (2014)

    Article  Google Scholar 

  10. Zhao, Y.: Dimensional synthesis of a three translational degrees of freedom parallel robot while considering kinematic anisotropic property. J. Robot. Comput.-Integr. Manuf. 29(1), 169–179 (2013)

    Article  Google Scholar 

  11. Cirilloa, A., Cirilloa, P., De Mariaa, G., Marinob, A., Natalea, C., Pirozzia, S.: Optimal custom design of both symmetric and unsymmetrical hexapod robots for aeronautics applications. J. Robot. Comput.-Integr. Manuf. 44, 1–16 (2017)

    Article  Google Scholar 

  12. Strang, G.: Linear Algebra and its Application. Academic Press, New York (1976)

    MATH  Google Scholar 

  13. Salisbury, J. K., Graig, J.: Articulated hands: Force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  14. Gosselin, C. M., Angeles, J.: A global performance index for the kinematic optimization of robotic manipulators. J. Mech. Des. 113(3), 220–226 (1991)

    Article  Google Scholar 

  15. Gosselin, C. M., Lavoie, E.: On the kinematic design of spherical three-degree-of-freedom parallel manipulators. Int. J. Robot. Res. 12, 394–402 (1993)

    Article  Google Scholar 

  16. Huang, T., Gosselin, C. M., Whitehouse, D. J., Chetwynd, D. G.: Analytical approach for optimal design of a type of spherical parallel manipulator using dexterous performance indices. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 217, 447–456 (2003)

    Article  Google Scholar 

  17. Lee, S. H., Lee, J. H., Yi, B. J., Kim, S. H., Kwak, Y. K.: Optimization and experimental verification for the antagonistic stiffness in redundantly actuated mechanisms: a five-bar example. Mechatronics 15(2), 213–238 (2005)

    Article  Google Scholar 

  18. Asada, H.: A geometrical representation of manipulator dynamics and its application to arm design. ASME J. Dyn. Sys. Meas. Control 105, 131–135 (1983)

    Article  MATH  Google Scholar 

  19. Gosselin, C., Angeles, J.: A Global performance index for the kinematic optimization of robotic manipulators. J. Mech.Des. 113, 220–226 (1991)

    Article  Google Scholar 

  20. Wu, J., Jinsong, W., Tiemin, L., Wang, L., Guan, L.: Dynamic dexterity of a planar 2-DOF parallel manipulator in a hybrid machine tool. Robotica 26, 93–98 (2008)

    Article  Google Scholar 

  21. Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  22. Michalewicz, Z.: Genetic Algorithms and Data Structures Evolution Programs. Springer, Berlin (1994). ISBN: 3-540-580090-5 Michalewicz, Z.: .

  23. Sumait, A. l., Othman, A. l., Sykulski, J. K.: Application of pattern search method to power system valve-point economic load dispatch. Electr. Power Energy Syst. 29, 720–730 (2007)

    Article  Google Scholar 

  24. Rechenberg, I.: Evolutionsstrategie - Optimierung Technischer Systeme Nach Prinzipien Der Biologischen Evolution. Friedrich Frommann, Verlag (1973)

    Google Scholar 

  25. Holland, H. J.: An Introductory Analysis with Application to Biology Control and Artificial Intelligence. The University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  26. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Inc., New York (2001). ISBN:047187339X

    MATH  Google Scholar 

  27. Enferadi, J., Akbarzadeh Tootoonchi, A.: Accuracy and stiffness analysis of a 3-RRP spherical parallel manipulator. Robotica 29, 193–209 (2011)

    Article  MATH  Google Scholar 

  28. Andersson, J.: A survey of multiobjective optimization in engineering design, Technical Report No. LiTH-IKP-R-1097, Department of Mechanical Engineering Linköping University, Linköping, Sweden (2000)

  29. Deb, K., Agarwal, S, Meyarivan, T.: A Fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Enferadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enferadi, J., Nikrooz, R. The Performance Indices Optimization of a Symmetrical Fully Spherical Parallel Mechanism for Dimensional Synthesis. J Intell Robot Syst 90, 305–321 (2018). https://doi.org/10.1007/s10846-017-0675-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0675-6

Keywords

Navigation