Skip to main content
Log in

A Non-Linear Least Squares Approach to SLAM using a Dynamic Likelihood Field

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a fast scan matching approach to online SLAM supported by a dynamic likelihood field. The dynamic likelihood field plays a central role in the approach: it avoids the necessity to establish direct correspondences; it is the connection link between scan matching and the online SLAM; and it has a low computational complexity. Scan matching is formulated as a non-linear least squares problem that allows us to solve it using Gauss-Newton or Levenberg-Marquardt methods. Furthermore, to reduce the influence of outliers during optimization, a loss function is introduced. The proposed solution was evaluated using an objective benchmark designed to compare different SLAM solutions. Additionally, the execution times of our proposal were also analyzed. The obtained results show that the proposed approach provides a fast and accurate online SLAM, suitable for real-time operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennewitz, M., Stachniss, C., Behnke, S., Burgard, W.: Utilizing reflection properties of surfaces to improve mobile robot localization. In: 2009 IEEE International Conference on Robotics and Automation, pp. 4287–4292. Kobe, Japan (2009)

  2. Biber, P., Strasser, W.: The normal distributions transform: a new approach to laser scan matching. In: Intelligent Robots and Systems, 2003. (IROS 2003)., pp. 2743–2748 vol. 3. IEEE, Las Vegas, USA (2003)

  3. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)

    Article  Google Scholar 

  4. Burguera, A., González, Y., Oliver, G.: On the use of likelihood fields to perform sonar scan matching localization. Auton. Robot. 26(4), 203–222 (2009)

    Article  Google Scholar 

  5. Castellanos, J., Martinez-Cantin, R., Tardós, J., Neira, J.: Robocentric map joining: improving the consistency of EKF-SLAM. Robot. Auton. Syst. 55(1), 21–29 (2007)

    Article  Google Scholar 

  6. Castellanos, J.A., Tardos, J.D., Schmidt, G.: Building a Global Map of the Environment of a Mobile Robot: The Importance of Correlations. In: Proceedings of International Conference on Robotics and Automation, vol. 2, pp. 1053–1059. New Mexico, USA (1997)

  7. Censi, A.: An ICP variant using a point-to-line metric. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), pp. 19–25. Pasadena, CA, USA (2008)

  8. Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Tech. Rep. Cornell University, New York (2004)

    MATH  Google Scholar 

  9. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

    Article  Google Scholar 

  10. Grisetti, G., Stachniss, C., Grzonka, S., Burgard, W.: A tree parameterization for efficiently computing maximum likelihood maps using gradient descent. In: Proceedings of Robotics: Science and Systems (RSS). Atlanta, USA (2007)

  11. Hall, B.: Lie groups, lie algebras, and representations: an elementary introduction, vol. 222. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  12. Hertzberg, C.: A Framework for Sparse, Non-Linear Least Squares Problems on Manifolds. Master’s thesis. Universität Bremen, Germany (2008)

    Google Scholar 

  13. Holz, D., Behnke, S.: Sancta Simplicitas - On the efficiency and achievable results of SLAM using ICP-based Incremental Registration. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), pp. 1380–1387. Alaska, USA (2010)

  14. Howard, A., Roy, N.: The robotics data set repository (Radish). radish.sourceforge.net (2003)

  15. Jesus, F., Ventura, R.: Combining Monocular And Stereo Vision In 6D-SLAM for The Localization of a Tracked Wheel Robot. In: 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6. Texas, USA (2012)

  16. Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A Flexible and Scalable SLAM System with Full 3D Motion Estimation. In: Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 155–160. Kyoto, Japan (2011)

  17. Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleiner, A.: On measuring the accuracy of SLAM algorithms. Auton. Robot. 27(4), 387–407 (2009)

    Article  Google Scholar 

  18. Lau, B., Sprunk, C., Burgard, W.: Efficient grid-based spatial representations for robot navigation in dynamic environments. Robot. Auton. Syst. 61(10), 1116–1130 (2013)

    Article  Google Scholar 

  19. Lee, J.M.: Smooth manifolds. In: Introduction to Smooth Manifolds, pp. 1–29. Springer (2003)

  20. Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robot. 4 (4), 333–349 (1997)

    Article  Google Scholar 

  21. Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2D range scans. J. Intell. Robot. Syst. 18(3), 249–275 (1997)

    Article  Google Scholar 

  22. Madsen, K., Bruun, H., Tingleff, O.: Methods for non-linear least squares problems. Tech. rep., Informatics and Mathematical Modelling. Technical University of Denmark, Denmark (2004)

  23. Montemerlo, M., Thrun, S.: Simultaneous Localization and Mapping With Unknown Data Association Using FastSLAM. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), vol. 2, pp. 1985–1991 (2003)

  24. Montesano, L., Minguez, J., Montano, L.: Probabilistic scan matching for motion estimation in unstructured environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3499–3504 (2005)

  25. Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Mag. 9(2), 61 (1988)

    Google Scholar 

  26. Neira, J., Tardos, J.: Data association in stochastic mapping using the joint compatibility test. IEEE Trans. Robot. Autom. 17(6), 890–897 (2001)

    Article  Google Scholar 

  27. Olson, E.B.: Real-Time Correlative Scan Matching. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), pp. 4387–4393. Kobe, Japan (2009)

  28. Pfister, S.T., Kriechbaum, K.L., Roumeliotis, S.I., Burdick, J.W.: Weighted range sensor matching algorithms for mobile robot displacement estimation. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), vol. 2, pp. 1667–1674. Washington, DC, USA (2002)

  29. Platinsky, L., Davison, A.J., Leutenegger, S.: Monocular Visual Odometry: Sparse Joint Optimisation or Dense Alternation?. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5126–5133 (2017)

  30. Smith, R.C., Cheeseman, P.: On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 5(4), 56–68 (1986)

    Article  Google Scholar 

  31. Stachniss, C., Leonard, J.J., Thrun, S.: Simultaneous Localization and Mapping. In: Siciliano, B., Khatib, O. (eds.) Springer Handproceedings of Robotics, pp. 1153–1176. Springer International Publishing, Cham (2016)

  32. Thrun, S.: A probabilistic on-line mapping algorithm for teams of mobile robots. Int. J. Robot. Res. 20(5), 335–363 (2001)

    Article  Google Scholar 

  33. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics, vol. 1. MIT Press, Cambridge (2005)

  34. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice, Lecture Notes in Computer Science, vol. 1883, pp. 298–372. Springer Berlin Heidelberg (2000)

Download references

Acknowledgements

This research is supported by: National Funds through FCT - Foundation for Science and Technology, in the context of the project UID/CEC/00127/2013; and by European Union’s FP7 under EuRoC grant agreement CP-IP 608849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eurico Pedrosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrosa, E., Pereira, A. & Lau, N. A Non-Linear Least Squares Approach to SLAM using a Dynamic Likelihood Field. J Intell Robot Syst 93, 519–532 (2019). https://doi.org/10.1007/s10846-017-0763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0763-7

Keywords

Navigation