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Abstract
The self-localization of mobile robots in the environment is one of the most fundamental problems in the robotics navigation
field. It is a complex and challenging problem due to the high requirements of autonomous mobile vehicles, particularly with
regard to the algorithms accuracy, robustness and computational efficiency. In this paper, we present a comparison of three
of the most used map-matching algorithms applied in localization based on natural landmarks: our implementation of the
Perfect Match (PM) and the Point Cloud Library (PCL) implementation of the Iterative Closest Point (ICP) and the Normal
Distribution Transform (NDT). For the purpose of this comparison we have considered a set of representative metrics,
such as pose estimation accuracy, computational efficiency, convergence speed, maximum admissible initialization error
and robustness to the presence of outliers in the robots sensors data. The test results were retrieved using our ROS natural
landmark public dataset, containing several tests with simulated and real sensor data. The performance and robustness of the
Perfect Match is highlighted throughout this article and is of paramount importance for real-time embedded systems with
limited computing power that require accurate pose estimation and fast reaction times for high speed navigation. Moreover,
we added to PCL a new algorithm for performing correspondence estimation using lookup tables that was inspired by the
PM approach to solve this problem. This new method for computing the closest map point to a given sensor reading proved
to be 40 to 60 times faster than the existing k-d tree approach in PCL and allowed the Iterative Closest Point algorithm to
perform point cloud registration 5 to 9 times faster.
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1 Introduction

Industrial mobile robots (AGVs, Automatic Guided Vehicle),
are vehicles that can self-localize and move autonomously
without human intervention. They are commonly used to
transport materials between work stations in warehouses
and production lines. They have been used in industrial envi-
ronments for more than 50 years and both the algorithms
and hardware in which they rely on have been evolving
in order to increase the accuracy, robustness and flexibility
while decreasing the costs of construction and operation.

Regarding the localization systems in industrial environ-
ments, it is common to use solutions that rely on artificial
landmarks, such as magnetic tape following, line track-
ing or reflector based laser triangulation [12, 13]. On the
other hand, service robotics applications tend to use map-
matching algorithms that take advantage of natural land-
marks [11, 15] in order to reduce installation time and
decrease operation maintenance costs. These natural land-
marks are composed by a set of distances and angles to the
detected objects (such as doors, walls, furniture and many
others) that can be acquired through an on-board laser range
finder. This method has the main advantage of not requir-
ing the installation of dedicated artificial landmarks in the
environment, which in some factories shop floors might not
be a viable option. However, it is expected that even with-
out special markers and in straight corridors, the localization
system remains accurate and robust. Despite its advantages,
this approach needs to process a higher amount of sensor
data efficiently in order to provide real-time localization and
needs more advanced techniques in order to tolerate outliers
in the sensor data. Therefore, the map-matching algorithms
must be optimized in terms of accuracy, processing time,
convergence speed and also sensor noise robustness.

Map-matching is a method of self-localization for mobile
robots in which the sensor data of the local environment is
matched with an already stored map. With this in mind, this
paper addresses the comparison of three of the most used
algorithms in localization systems based on environment
natural landmarks, which are the Perfect Match (PM)
[5], the Iterative Closest Point (ICP) [2] and the Normal
Distributions Transform (NDT) [3].

The Perfect Match algorithm has increased its popularity
within the robotics community mainly due to its successful
application in the Middle Size League (MSL) robot soccer
competitions, in which it was able to provide robust
localization for robots that require high frequency decision
and locomotion control. For its turn, ICP is a frequently
used approach to solve the map matching problem for 2D
and 3D point-clouds. The NDT algorithm is currently an
alternative to ICP, that does not rely on the establishment
of correspondences. As a result, the NDT is theoretically
more immune to the sensors noise and sensors sampling

resolution, as ICP assumes that sensor readings have been
produced in the same position as the map reference points.
Furthermore, another drawback of ICP is that in each
new iteration a new function is minimized, since the
correspondence information between points obtained from
previous iterations are not used. As a result, a greater
number of iterations may be needed to converge to a good
solution [1]. The implementations of ICP and NDT that
were used for this comparison are available in the Point
Cloud Library (PCL), one of the most relevant open-source
projects related to robotics perception.

The comparison and evaluation of these three algorithms
were performed considering different metrics, namely, the
computational weight of each algorithm, the speed of
convergence, the maximum admissible initialization error
(maximum rotation error introduced in the initial pose
estimation of the robot that the map-matching algorithms
can tolerate), and finally the robustness of the algorithms in
the presence of outliers on the robot sensor data.

For the execution of this comparison we used the ROS
(Robot Operating System) framework. In this regard, the work
of Carlos et al. [4] was considered to make the interface
between ROS and PCL, as it was designed to solve the robot
localization problem and is completely parameterizable.

In terms of results, these were extracted both in a
simulated environment (using the Stage Simulator) with
virtually generated sensor information (laser range finder
data), as well as using a real robotic platform (Jarvis robot),
which has a SICK NAV350 laser range finder on board used
for map-matching and ground-truth (relying on a reflector
based triangulation system).

This paper is organized as follows: after the brief
introduction given in this section, the Section 2 describes
the algorithms (Perfect Match, Iterative Closest Point and
Normal Distribution Transform). Then, Section 3 addresses
the comparison of experimental results retrieved with each
algorithm for each of the evaluation metrics. Finally,
Section 4 concludes this paper and presents some future work.

2 Algorithms Definition

In this section it is presented the main concepts of the map-
matching algorithms used in this experimental comparison.

2.1 Perfect Match

The Perfect Match is a light computational algorithm
that was proposed by M. Lauer et al. in [5]. In this
algorithm, the vehicle pose is computed using 2D distance
information from the surrounding robot environment which
can be acquired using LIDARs or CCD cameras. The
main goal of the algorithm is to minimize the matching
error (fitting error between the data acquired and the
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environment map). Overall, the Perfect Match algorithm can
be divided into three steps: 1) matching error and gradient
computation; 2) optimization routine based on the Resilient
Back-Propagation (RPROP); and 3) co-variance estimation
using the second derivative. Using the acquired map of the
environment, that is then converted to an occupancy grid
map, it is possible to compute the distance and gradient
maps of the environment [5]. In the case of the distance
map, each cell gives the distance to the closest obstacle.
For the gradient maps, there are two measurements, one for
the x direction and another to the y direction. The first one
gives the direction of the variation of the distance map with
the variation of the x position. The second one shows the
direction variation of the distance map with the y position
variation. These three maps (distance map, and x/y gradient
matrices) can be pre-computed in order to speed up the
computation of the Perfect Match algorithm.

Considering now a list of points of a Laser Range Finder
scan defined as PList . The point i of this list in the world
referential frame is PList (i) = (xi, yi). The cost value is
given by equation (1) where di andEi represents, respectively,
the distance matrix and the cost function values of point i.

E =
PList .Count∑

i=1

Ei, Ei = 1 − L2
c

L2
c + d2

i

(1)

The parameter Lc is used to discard points with large error
Ei , increasing the robustness of the algorithm to outliers.
To minimize the error function, the Perfect Match algorithm
uses the RPROP optimizer. The output of this algorithm is
the state of the robot, x, y and θ (robot pose) that minimizes
the map-matching error. For a detailed description of the
algorithm please refer to [5].

2.2 Iterative Closest Point

The Iterative Closest Point algorithm is a commonly
used map-matching method which tries to minimize the
Euclidean distance between the input data and a reference
model (in the self-localization problem it corresponds to the
sensor data and the map of the environment).

From a mathematical point of view, consider two sets
of 2D points, source A (with n points) and target B (with
m points) ⊆ R

2. The objective is to find a transformation
function u : A → B that minimizes the mean squared
distances (MSD) between A and B (Eq. 2).

MSD(A,B, u) = 1

n

∑

a∈A,b∈B

‖b − u(a)‖2 (2)

Incorporating the rotation (R) and translation (t) matrices
into the matching function, the minimization problem can
be written using Eq. 3.

min
u:A→B

1

n

n∑

i=1

‖bi − Rai − t‖2 (3)

With this mathematical formulation, the ICP tries in each
iteration to minimize the MSD(A,B, u) by switching
between a matching and a transformation stage.

Matching Stage In this first stage, the objective is to
minimize the mean squared distances MSD(A,B, u) by
finding the best correspondence between a point ai ∈ A

and bi ∈ B. This step is in its most basic form executed
by selecting the point bi ∈ B with the minimum Euclidean
distance to the point ai ∈ A. Note that in the first iteration, t
and R are normally set to [0, 0]T and to the identity matrix
respectively.

Transformation Stage During the transformation stage, the
objective is to compute the optimal R and t that minimizes
(3), using the correspondences computed in the previous
stage. ICP uses a simple least square solver to find the
optimal linear transformation matrix (R|t) that minimizes
(3) [2]. For this purpose, the algorithm starts by subtracting
from the reference and sensor point clouds their respective
centroid, as shown in Eqs. 4 and 5.

a′
i = ai − 1

n

n∑

i=0

ai (4)

b′
i = bi − 1

m

m∑

i=0

bi (5)

This step helps simplifying the minimization problem [2].
Then, the cross-variance matrix is computed using the Eq. 6
with A′ and B ′ being the set of points a′

i and b′
i respectively.

H = A′B ′T (6)

Now, the rotation angle θ can be computed from Eq.7.

θ = atan2((H(0, 1) − H(1, 0)), (H(0, 0) + H(1, 1)) (7)

It can be shown that, the optimal solution for R and t that
minimizes the objective function is given by Eqs. 8 and 9,
where ā and b̄ are the points centroid computed in Eqs. 4
and 5.

In the end of the transformation stage, the source / sensor
data is transformed using the estimated (R|t) matrix and the
algorithm goes back to the matching stage (with (R|t) set
to the identity matrix), unless a stopping criteria is verified
(e.g. number of iterations, Euclidean error improvement
between iterations, etc).

R = m

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
(8)

t = b̄ − Rā (9)

The ICP 2D implementation used in this paper was the one
available in the Point Cloud Library (PCL).
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2.3 Normal Distributions Transform

The Normal Distributions Transform was introduced by
P. Biber and W. Straßer [3] as a method for 2D scan
registration and it was later extended for 3D scan matching
[6, 7] by M. Magnusson. This map-matching algorithm
creates a smooth surface representation of the environment
that is modeled by a set of local probability density
functions (PDFs). This representation is built from a set of
reference points that are grouped into a set of fixed sized
cells forming a voxel grid. Then, for each voxel grid cell that
has at least a group of 6 points it is computed the mean (q)
and covariance matrix (�) using the following equations:

q = 1

n

n∑

i=1

ki, � = 1

n

n∑

i=1

(ki − q)(ki − q)T (10)

with ki=1..n representing all the points inside each voxel
grid cell. After initializing the 3D representation of the
environment, the initial set of references points can be
discarded and the probability of measuring a sample in a
given voxel grid cell region is given by:

p(k) ∼ −d1e
− d2(k−q)T �−1(k−q)

2 . (11)

In this equation, d1 and d2 are constants used to bound the
effect of the sensor outliers [7], while q is the mean vector
and � is the covariance matrix of the points contained
within the respective cell.

To use the NDT approach for 3D position track-
ing, it is defined a number of parameters (−→w =
{tx, ty, tz, φx, φy, φz}) to estimate and optimize. The 3D
transformation function between two robot coordinate
frames is represented by {tx, ty, tz} for the translation and
z-y-x Euler angles {φx, φy, φz} for the rotation, which can
be represented as:

T (−→w ,
−→
k ) = RxRyRz

−→
k + −→

t . (12)

Variable t represents the {tx, ty, tz} translation parameters
and RxRyRz is the rotation matrix built from the
{φx, φy, φz} Euler angles. The goal of a scan registration is
to estimate these 6 parameters from the sensor data given
a pre-computed 3D representation of the environment. This
is done using the Newton’s optimization algorithm [10] in
order to minimize the score function:

score(p(k′)) =
n∑

i=1

−d1e
− d2(k′

i
−qi )

T �
−1
i

(k′
i
−qi )

2 (13)

This score is calculated by evaluating the normal distribu-
tion of all points k′

i and summing the result (score) while
also updating the gradient (g) and hessian matrix (H ) in
order to retrieve the necessary corrections (�k) for estimat-
ing the robot pose. These corrections are computed using:

H�k = −g (14)

Fig. 1 Jarvis robot

3 Experimental Results

Having introduced the theoretical foundations of each of the
three algorithms in the previous section, we will now present
the experimental set-up (e.g. framework and simulator
used, the algorithms parameterization, etc) and the results
obtained in our experiments (the dataset can be found at1).

3.1 Framework description and evaluation tests

The ROS framework was used to perform the comparison
of the three algorithms. Considering the simulation case,
the Stage simulator was selected since it allows to model a
virtual world where it can be introduced robots, sensors and
objects. Besides the simulation, it is also presented results with
a real robot platform (Jarvis). This robot is equipped with a
commercial navigation laser (SICKNAV350), seen in Fig. 1.

3.2 Set-up of the Experiment

The initial parameterization of the algorithms for all the
experiments was made as follows:

– All algorithms process the same sensor data.

1https://github.com/carlosmccosta/dynamic robot localization tests

https://github.com/carlosmccosta/dynamic_robot_localization_tests
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– All algorithms use the same reference map.
– For the evaluation of the three presented algorithms, it

was ensured that the same stopping criteria was used for
each evaluation metric. Considering the computational
weight metric, we set as the stopping criteria to
be the run of 50 iterations. This value was chosen
since we verified experimentally that all matching
algorithms converge to the final solution during this
set of iterations. For the results on the converge speed,
we defined a criteria that evaluated the position and
orientation correction made by the algorithms between
each iteration. When this correction is below a certain
value the algorithm is considered to have converged.
For the maximum initialization error metric, the same
initial positions and orientations were considered for
the three algorithms. Then, for each of these poses, the
orientation error was incremented in each iteration and
we stop the evaluation when the matching algorithm
diverged to a bad matching solution. Finally, for the
evaluation of the algorithms robustness to outliers, the
same reference map and sensors data was used.

– All algorithms do not have access to data from
odometry. Therefore the pose error is caused by the
robots movement, traveling at 0.5 m/s.

– The version of the ICP available in PCL used in the
tests was the “iterative closest point 2d” available
in [4], without RANSAC for outlier rejection
(“max number of ransac iterations: 0”), and unless
stated otherwise, the maximum distance search
value was set to a high value for forcing the estab-
lishment of correspondences for all sensor data
(“max correspondence distance: 9999.0”). Also, we set
the parameter “use reciprocal correspondences: false”
in all the tests performed.

– The NDT implementation used was the 3D version
available in PCL.

– The computer used had a Intel Core i5 450M @ 2.40
GHz.

We choose to use the 3D implementation of NDT
present in PCL (in relation to the 2D implementation also
available in PCL) given that in preliminary tests it achieved
superior robustness against initialization errors and sensor
outliers while also being able to track the robot pose with
higher accuracy. Moreover, the 2D implementation seems
to have numerical / registration instability, which causes
sudden loss of pose tracking even when the robot was
performing only linear motions (the 3D implementation

Fig. 2 Stage simulator with robot initial pose and unknown / not mapped objects presented as red rectangles. These objects introduce wrong
measurements and occlusions in the LIDAR data
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did not suffer from these issues). We acknowledge that
the 3D implementation of NDT in PCL is about 4 times
slower than the 2D implementation, but it should be noted
that the 2D implementation uses 4 overlapping grids to
avoid discretization problems, which requires to compute
the 2D-NDT score 4 times more, one for each grid for each
sensor point (the 3D implementation relies on a single voxel
grid). Given the superior robustness, stability and accuracy
of the 3D implementation of NDT in PCL (in relation to
the 2D implementation), we believe that its usage in this
article provides a more useful comparison for the robotics
community that uses PCL.

Regarding the ICP parameterization it should be noted that
in our previous article [14] we set “use reciprocal correspond
ences: true”, which was causing the correspondence estima-
tion stage to reject up to 40% of sensor data (a correspon-
dence [map → sensor-data] needed to be the same as
[sensor-data → map]). This significant rejection of cor-
respondences was reducing the robustness of the ICP
against rotation errors, and as such, in this article we set
“use reciprocal correspondences: false” in order to avoid
this issue.

3.3 Results on Computational Weight

The main goal of these tests was to evaluate the
computational weight of the fundamental processing stages
of the three map-matching algorithms. In order to achieve
a more equitable performance evaluation of each method,
the number of iterations was fixed to 50 and any auxiliary
algorithm or filter that could influence the results was turned
off. It was evaluated how the number of LIDAR points, the

reference map cell size, and the presence of outliers in the
sensor data (disposed as shown in Fig. 2) influenced the
computational weight of the map-matching algorithms.

Analyzing Table 1 it is possible to verify that the Perfect
Match is computationally lighter in all the tests performed.
Furthermore, it can also be seen that each Perfect Match
and NDT iteration is mainly affected by the amount of
the robot sensors data, whereas in the case of ICP it is
affected by all the variables that were analyzed (amount
of the robot sensors data, resolution of the reference map
and the presence of outliers in the robot sensors data).
This higher computational demand required by the ICP in
each of its iterations can be explained by the usage of a
k-d tree to store the reference map (in the current PCL
implementation of ICP) which makes the access slower and
less deterministic (when compared to lookup tables used by
the Perfect Match). The main advantage of a k-d tree is the
optimization of memory required to store the information
of the reference map, sacrificing the search time to access
the data. The Perfect Match uses approximately three times
more memory than each of the other algorithms (ICP and
NDT), but for the case under review (localization of a robot
in 2D space), the operating speed is an important factor and
the requirements in terms of memory are less critical.

By analyzing the distribution of the time used in each of
the stages of ICP, we concluded that more than 90% of the
total time is spent in the search for correspondences in the
k-d tree of the map. In order to reduce the computational
weight of ICP in the current PCL implementation, we
replaced the k-d tree search approach with a lookup table
search method. Besides reducing the computation cost, this
approach provides constant and deterministic retrieval of

Table 1 Computational time (in ms) taken by each algorithm to perform 50 iterations

Map 5cm Map 1cm

Points 288 Points 1440 Points 288 Points 1440

No Out Outliers No Out Outliers No Out Outliers No Out Outliers

PM Mean Time 1 1 5 5 1 2 6 6

Max Time 5 3 13 12 6 5 15 15

Min Time <1 <1 2 2 <1 <1 3 3

ICP Mean Time 29 32 114 125 38 49 126 181

Max Time 43 47 145 175 64 76 157 267

Min Time 22 23 103 109 29 37 115 145

LUT-ICP Mean Time 6 6 19 19 6 6 19 20

Max Time 14 14 31 40 14 16 32 33

Min Time 3 3 13 13 3 3 13 14

NDT Mean Time 72 52 335 309 60 69 339 310

Max Time 94 85 386 355 77 93 471 376

Min Time 60 43 299 231 52 46 301 228

For these tests were considered two different angular resolutions for the laser sensor. One which produced 288 points and another generated 1440
points per scan
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Fig. 3 Number of iterations performed by PM, ICP and NDT

the closest map point when a given sensor measurement
is provided. This was achieved with the discretization of
the environment into a 2D grid and the pre-computation
of the closest map point for each of its cells. As such,
when it is necessary to find the closest point to a given
sensor measurement, instead of performing a computational
intensive tree search, it is only required to use the sensor
measurement 2D coordinates to compute the grid cell index
in which the cached closest map point is stored and ready to
be retrieved.

In Table 1 it is presented the computational weight
results of this new proposed version of ICP (LUT-ICP),
achieving performance of 5 to 9 times faster than the
actual PCL implementation (relying on k-d trees). This new
closest point search approach using a more deterministic
approach reduced the correspondence estimation phase to
a fast matrix access, boosting the ICP efficiency and cycle

time while achieving computational times much closer to
those of the PM algorithm. Although the operation speed
was greatly optimized with this new implementation, the
time needed to create the lookup table at the start of
the program (using our implementation of the Meijster
distance transform algorithm [9]) was slightly higher when
compared with the k-d tree approach. However, given that
this operation only needs to be calculated once for each map,
its impact on the startup of the system is far outweighed by
the performance gains that it provides during the runtime of
a self-localization system. However, for SLAM applications
in which it is required to dynamically update the map, it
would be interesting to analyze how recomputing part of a
lookup table compares in relation to rebuilding a k-d tree in
terms of performance.

Considering the resolution of the reference map, from
Table 1 it is possible to conclude that due to the NDT

Fig. 4 Total execution time of PM, ICP and NDT
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internal discretization of the environment as a set of
normal distributions, the NDT algorithm is not affected
by the map resolution. Moreover, it should be noted
that the 3D implementation of NDT uses the Newton
optimization method with a line search algorithm [10]
in order to compute the optimization step length that
guarantees sufficient decrease of the optimization score,
which requires an internal loop of 10 iterations in which
the NDT score must be computed. As such, the number
of iterations reported in the tests requires the computation
of the score by a factor of 10. It should also be noted
that the 3D implementation of NDT in PCL uses a
voxel grid for storing the normal distributions mean and
covariance information and each cell of this voxel grid is
indexed in a k-d tree in order to allow efficient radius
search (required when computing the NDT score for each
sensor point). Moreover, the 3D implementation of NDT
in PCL does not include the extensions proposed in [7,
8], that would improve the robustness and accuracy of
NDT at the cost of higher computational cost. The first
extension introduces the iterative discretization add-on
that runs the registration algorithm at successively finer
cell resolution for higher pose estimation accuracy. The
second improvement implements a trilinear interpolation
approach that instead of using just one voxel grid over
the 3D space, it relies on 8 overlapping grids for
minimizing the discretization effects and have a smoother
map representation. The last add-on proposes the concept
of linked cells, in which every empty NDT cell stores a
pointer to the closest cell (with covariance information),
allowing the NDT algorithm to register point clouds with
higher initial error of alignment.

3.4 Results on Convergence Speed

At this point we have concluded that each PM iteration,
can be up to 72 times faster than a NDT iteration
(considering the used PCL implementation) and up to
32 times faster than a ICP iteration. But this raises the
question of convergence speed. Some algorithms may have
a higher computational cost for each iteration, but require
less iterations to converge to a good solution. In order
to analyze the convergence speed, it was added another
stopping criteria to the three map-matching algorithms. This
criteria evaluates the position and orientation corrections
made by the algorithms between two iterations. If they are
below a certain value the optimization process stops. The
parameters values used in this stopping criteria were 0.01m
in translation and 0.8 degrees in rotation for all algorithms.
The selected test scenario was the one with less density in
robot sensor data, with the map with the lowest resolution
and without outliers. Figures 3 and 4 present the results
of the earlier described experiment. Figure 3 presents the
number of iterations of PM (blue), ICP (yellow) and NDT
(orange) over time, while the robot performs the path shown
in Fig. 7. Figure 4 represents the PM (in blue), ICP (yellow)
and NDT (orange) convergence time considering the same
execution path. As can be seen in Fig. 3, the ICP and NDT
algorithms need less iterations than the PM to perform map-
matching. But this is not enough to be computationally
lighter than Perfect Match. The NDT often converges in
less iterations than PM due to the application of Newton’s
algorithm for minimization of the −score (which uses first
and second derivative information while PM only uses the
first derivative) and also due to an adaptive step length

Fig. 5 Number of iterations performed by PM and LUT-ICP
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Fig. 6 Execution times of PM and LUT-ICP

computation within the Newton optimization to guarantee
sufficient decrease of the score value.

In Fig. 3, it is also possible to identify three situations.
A zone where ICP and NDT both perform only one
iteration, which corresponds to the situation when the
robot is stopped. A zone where ICP and NDT perform
between two and eight iterations that corresponds to the
situation where the robot is moving in a straight line. And
another area where the number of iterations rises, even
exceeding the PM number of iterations (mainly for the
NDT case), corresponding to the situation when the robot is
rotating. The above findings do not change if we repeat the
experience for the scenario where there are outliers present
in the map.

Figures 5 and 6 show a comparison between the Perfect
Match algorithm and our ICP approach using lookup tables
(LUT-ICP) regarding convergence speed.

As it can be seen in Fig. 5, the number of iterations
performed by LUT-ICP are the same as the PCL imple-
mentation of ICP (Fig. 3), but the computational time used
in each iteration is now much lower and similar to the
PM’s (Fig. 6). This new proposed approach does not nega-
tively affect the ICP’s performance and greatly reduces its
cycle time, making it a more viable solution for real time
operation.

3.5 Maximum Initialization Error

In the presented tests the Perfect Match has shown to be
computationally lighter than ICP and NDT. In this section,
we show test results for the three algorithms considering
the initial localization error of the robot, in order to
evaluate which algorithm is more robust to local minima.
In these experiments it were used the same parameters of

Fig. 7 Interval for the rotation
initial error that the algorithms
support and still converge to a
good solution. In red results for
the PM, in purple results for the
ICP, and in green color results
for NDT. The measured angle is
overlapped with the robot pose
ground truth represented by
black arrows
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Fig. 8 Path (red line) performed
by the Jarvis platform in a real
environment, with a laser scan
example (blue dots). In this laser
scan it’s possible to see the major
obstacle of the environment
(vertical blue dots forming a
line, on the left side of the map)

Section 3.3, i.e, a fixed number of iterations was set, the
maximum corresponding distance of ICP was set to a high
value and all NDT filters were turned off. In order to see
the orientation error tolerance of the analyzed algorithms
we have stopped the robot in some points of the navigation
trajectory and the three algorithms were reinitialized with
an initial pose with a gradually greater orientation error (1
degree of resolution) until the matching algorithm diverges.
In Fig. 7 it is presented the set of poses where these
tests were performed (black arrows). Each of these poses
have another three pairs of arrows (red, purple and green).
These correspond, respectively, to the PM, ICP and NDT
orientation error limits in which they still converge to a
correct solution.

Analyzing the results in Fig. 7 it is clear that the PM, in
the majority of cases, supports an initialization error for the
rotation greater than both ICP and NDT.

One important aspect to refer is that the fact that
the parameter “use reciprocal correspondences” was set
to false had a crucial positive impact in the overall
performance of the ICP algorithm, making it more robust.
For this specific case, the maximum initialization error
achieved by ICP was greatly improved (in relation to the
results presented in [14]). These conclusions remain the
same for the LUT-ICP, as the performance of the algorithm
is only affected in terms of cycle

Also, preliminary tests were made regarding the position
error, where we obtained similar results. We also performed
the experience of setting the stopping criteria used in
Section 3.4 but did not obtain better results. In addition,
we also tested limiting the correspondence distance of ICP
and PM. This test was performed in the start position of the
path shown in Fig. 7 - middle of the right vertical segment.
For this specific example and using Lc / max corresponden-
ce distance as 1m, the maximum initialization error of ICP
is about 100 degrees as the PM’s is 184. When decreasing
the value of these parameters to 0.1m, the robustness to
initialization errors in ICP drops in a higher factor than
PM’s, resulting in 13 and 62 degrees, respectively.

3.6 Evaluation of the Algorithms Robustness
to Outliers

At this point we noted PM advantages in the computational
weight. However, it raised the question of accuracy and
robustness to outliers. There exists a large number of
studies that address this issue. In particular the use of the
RANSAC for identifying the presence of outliers in the
sensor data. But many of these methods are transversal to
all matching algorithms and so it can also be used in the
PM algorithm. We are only interested for now in analyzing
the core algorithms, and we want to examine whether the

Table 2 Statistic data of the position and orientation errors obtained in simulation (with outliers) and with the Jarvis platform in presence of
natural outliers

Simulation Real dataset

Position error (m) Orientation error (◦) Position error (m) Orientation error (◦)
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

PM 0.112 0.0715 0.333 0.207 0.0110 0.00310 0.0889 0.0521

ICP 0.110 0.0704 0.305 0.209 0.0120 0.00384 0.0448 0.0311

NDT 0.127 0.0819 0.378 0.325 0.00951 0.00357 0.0640 0.0428
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Fig. 9 Position error along the trajectory with outliers in simulation

PM computational efficiency is achieved by sacrificing
accuracy/robustness to the result of matching. The PM has
built in its optimization function a kind of outlier filter,
tuned by the Lc parameter. In these experiments we used
Lc = 0.1 meters. Moreover, in order to try to make this a
more fair comparison we also changed the ICP parameter
of the maximum correspondence distance to 0.1 meters.
In relation to the NDT, the more related parameter is the
ratio of expected outliers in the sensor data, which is set by
default to 0.55.

As often simulators do not model important details that
can make a significant difference in the performance of

an algorithm, we also carried out the above experiments
with a real robot equipped with a laser range finder with a
reflective triangulation system installed on walls to serve as
ground-truth. In this dataset the Jarvis robot was traveling
at 0.05 m/s in a map with 20×8 m and performing the
path shown in Fig. 8. We reduced the robot’s velocity
because a 8 Hz laser can have significant distortion when
the robot is rotating fast, which would result in high error of
localization. This problem can be mitigated by using sensors
with high frequency motion estimation, such as wheels
encoders, in order to compute the robot odometry that could
be used to correct the laser distortion using spherical linear

Fig. 10 Orientation error along the trajectory with outliers in simulation
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Fig. 11 Positional error along the trajectory using the Jarvis robot

interpolation. In order to illustrate the major sensor outliers
of the robot environment, we also present a laser scan in
Fig. 8 (laser measurements shown as blue dots).

Comparing the results presented in Table 2 we can
conclude that all algorithms achieved similar results
regarding position and orientation errors in the same
circumstances and with equivalent parameterizations. With
all the information to this point it is possible to conclude
that the Perfect Match algorithm is equivalent to ICP and
NDT in terms of accuracy and robustness but with a lower
computational cost, leaving time for the application of more
advanced filters in order to increase the efficiency of a
localization system that relies on the PM. In this experiment,
the LUT-ICP achieved similar results as the original ICP
PCL’s implementation presented in this section, which rivals
the PM’s computational weight advantage with similar

accuracy and robustness results. Figures 9 and 10 present
the precision and results for the PM, ICP and NDT in the
simulated environment. While Figs. 11 and 12, present the
same results but in a real environment with the natural
presence of outliers, using the map and performing the path
presented in Fig. 8.

4 Conclusions and FutureWork

This paper presents a comparison between three well known
map-matching algorithms, the Perfect Match, the Iterative
Closest Point and the Normal Distribution Transform,
considering four different evaluation metrics.

Starting with the computational weight, the Perfect
Match has shown to be lighter than ICP and NDT. We

Fig. 12 Orientation error along the trajectory using the Jarvis robot
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have concluded that this better performance could be
mainly explained by the efficient PM correspondence search
algorithm that is based on lookup tables. Thus, we have
replaced the PCL ICP search approach based on a k-d
tree with the a lookup table search method, which enabled
us to greatly reduce the computational time of ICP, while
maintaining the same matching performance (number of
required iterations to converge, maximum initialization
error, position and orientation errors in the presence of
outliers). With this new search approach that we added
to PCL, the LUT-ICP obtained closer results to those of
Perfect Match, becoming a more viable solution for real
time operation.

In terms of convergence speed, the ICP and NDT have
shown that they require fewer iterations to converge when
the robot is stationary or moving in a straight line. But
their performance degrades significantly when rotations are
made. In this case PM has shown, one more time, to be a
viable option.

The analysis of the maximum initialization error was
the most interesting result from the set of tests performed.
The PM presented a higher tolerance to orientation errors
than ICP and NDT. As future work we intend to refine
this result in order to also include position error. However,
some preliminary tests were made which showed a similar
response of the three algorithms in terms of translation error.
Furthermore, we should highlight the capacity of PM to
handle outliers directly in the optimization function and
support at the same time greater initialization error when
compared with the other two analyzed algorithms.

In terms of accuracy, the three algorithms showed similar
results, however ICP, NDT and the PM implementation
handles the presence of outliers in different ways. The PM
has contemplated in its cost function the possible presence
of outliers. ICP handles outliers by trimming points that are
farther than a given distance. NDT bounds the influence
of outliers by computing the score as a mixture of a
normal distribution and a uniform distribution in which
we can specify the percentage of outliers that we are
expecting to observe. One of the disadvantages of NDT is
the discretization of the environment map into cells with
a lower resolution than the original map. This approach
introduces numerical errors that have a direct impact on
the quality of the matching result. This issue takes special
relevance when the map characteristic are not linear (such
as the case in which the environment map has many curves
and sharp edges), contributing to the growth of the matching
error and consequently deteriorating the estimation of the
AGV position (as high as 15 cm of translation error).

We acknowledge that there are a lot of other solutions in
the state of art which could be included in this comparison
(we only mentioned the ones implemented in PCL at the
time). This study served to validate the relevance of the

Perfect Match algorithm and we intend this to be the
basis for future algorithm developments, improvements and
comparisons.
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