Skip to main content
Log in

Robust State and Output Feedback Control of Launched MAVs with Unknown Varying External Loads

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The operation of launched micro aerial vehicles (MAVs) with coaxial rotors is usually subject to unknown varying external disturbance. In this paper, a robust controller is designed to reject such uncertainties and track both position and orientation trajectories. A complete dynamic model of coaxial-rotor MAV is firstly established. When all system states are available, a nonlinear state-feedback control law is proposed based on feedback linearization and Lyapunov analysis. Further, to overcome the practical challenge that certain states are not measurable, a high gain observer is introduced to estimate unavailable states and an output feedback controller is developed. Rigid theoretical analysis verifies the stability of the entire closed-loop system. Additionally, extensive simulation studies have been conducted to validate the feasibility of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, B., Fidan, B., Yu, C., Walle, D.: Uav formation control: theory and application. Recent Advan. Learn. Control 371, 15–33 (2008)

    Article  MathSciNet  Google Scholar 

  2. Basri, M.A.M., Husain, A.R., Danapalasingam, K.A.: Enhanced backstepping controller design with application to autonomous quadrotor unmanned aerial vehicle. J. Intell. Robot. Syst. 79(2), 295 (2015)

    Article  Google Scholar 

  3. Drouot, A., Richard, E., Boutayeb, M.: Nonlinear backstepping based trajectory tracking control of a gun launched micro aerial vehicle. In: AIAA Guidance, Navigation, and Control Conference, p 4455 (2012)

  4. Drouot, A., Richard, E., Boutayeb, M.: An approximate backstepping based trajectory tracking control of a gun launched micro aerial vehicle in crosswind. J. Intell. Robot. Syst. 1(70), 133–150 (2013)

    Article  Google Scholar 

  5. Drouot, A., Richard, E., Boutayeb, M.: Hierarchical backstepping-based control of a gun launched mav in crosswinds: theory and experiment. Control. Eng. Pract. 25, 16–25 (2014)

    Article  Google Scholar 

  6. Gnemmi, P., Haertig, J.: Concept of a gun launched micro air vehicle. In: 26Th AIAA Applied Aerodynamics Conference, p 6743 (2008)

  7. Gnemmi, P., Koehl, A., Martinez, B., Changey, S., Theodoulis, S.: Modeling and control of two glmav hover-flight concepts. In: Proceedings of the European Micro Aerial Vehicle Conference (2009)

  8. Hausamann, D., Zirnig, W., Schreier, G., Strobl, P.: Monitoring of gas pipelines–a civil uav application. Aircraft Eng. Aerospace Technol. 77(5), 352–360 (2005)

    Article  Google Scholar 

  9. Keller, J., Thakur, D., Dobrokhodov, V., Jones, K., Pivtoraiko, M., Gallier, J., Kaminer, I., Kumar, V.: A computationally efficient approach to trajectory management for coordinated aerial surveillance. Unmanned Syst. 1(01), 59–74 (2013)

    Article  Google Scholar 

  10. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Rob. 29(2), 315–378 (2012)

    Article  Google Scholar 

  11. Kendoul, F., Yu, Z., Nonami, K.: Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. J. Field Rob. 27(3), 311–334 (2010)

    Google Scholar 

  12. Koehl, A., Boutayeb, M., Rafaralahy, H., Martinez, B.: wind-disturbance and aerodynamic parameter estimation of an experimental launched micro air vehicle using an Ekf-like observer. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp 6383–6388. IEEE (2010)

  13. Koehl, A., Rafaralahy, H., Boutayeb, M., Martinez, B.: Time-varying observers for launched unmanned aerial vehicle. IFAC Proc. 44(1), 14,380–14,385 (2011)

    Article  Google Scholar 

  14. Koehl, A., Rafaralahy, H., Boutayeb, M., Martinez, B.: Aerodynamic modelling and experimental identification of a coaxial-rotor uav. J. Intell. Robot. Syst. 68(1), 53–68 (2012)

    Article  Google Scholar 

  15. Koehl, A., Rafaralahy, H., Martinez, B., Boutayeb, M.: Modeling and identification of a launched micro air vehicle: design and experimental results. In: AIAA Modeling and Simulation Technologies Conference (2010)

  16. Kumar, V., Michael, N.: Opportunities and challenges with autonomous micro aerial vehicles. Int. J. Robot. Res. 31(11), 1279–1291 (2012)

    Article  Google Scholar 

  17. Mahony, R., Hamel, T.: Robust trajectory tracking for a scale model autonomous helicopter. Int. J. Robust Nonlinear Control 14(12), 1035–1059 (2004)

    Article  MathSciNet  Google Scholar 

  18. McCormick, B.W.: Aerodynamics, Aeronautics, and Flight Mechanics, vol. 2. Wiley, New York (1995)

    Google Scholar 

  19. Meng, W., Yang, Q., Jagannathan, S., Sun, Y.: Adaptive neural control of high-order uncertain nonaffine systems: a transformation to affine systems approach. Automatica 50(5), 1473–1480 (2014)

    Article  MathSciNet  Google Scholar 

  20. Mokhtari, M.R., Braham, A.C., Cherki, B.: Extended state observer based control for coaxial-rotor uav. ISA Trans. 61, 1–14 (2016)

    Article  Google Scholar 

  21. Mokhtari, M.R., Cherki, B., Braham, A.C.: Disturbance observer based hierarchical control of coaxial-rotor uav. ISA Trans. 67, 466–475 (2017)

    Article  Google Scholar 

  22. Nonami, K.: Prospect and recent research & development for civil use autonomous unmanned aircraft as uav and mav. J. syst. Des. Dyn. 1(2), 120–128 (2007)

    Google Scholar 

  23. Nonami, K., Kendoul, F., Suzuki, S., Wang, W., Nakazawa, D.: Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles. Springer, Berlin (2010)

    Book  Google Scholar 

  24. Pflimlin, J.M., Souères, P., Hamel, T.: Position control of a ducted fan vtol uav in crosswind. Int. J. Control. 80(5), 666–683 (2007)

    Article  MathSciNet  Google Scholar 

  25. Pines, D.J., Bohorquez, F.: Challenges facing future micro-air-vehicle development. J. Aircr. 43(2), 290–305 (2006)

    Article  Google Scholar 

  26. Polycarpou, M.M., Ioannou, P.A.: A robust adaptive nonlinear control design. Automatica 32(3), 423–427 (1996)

    Article  MathSciNet  Google Scholar 

  27. Schroeder, D.J.: Astronomical Optics. Academic Press, Cambridge (1999)

  28. Sepulchre, R., Jankovic, M., Kokotovic, P.V.: Constructive Nonlinear Control. Springer, Berlin (2012)

    MATH  Google Scholar 

  29. Teel, A.R.: A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans. Autom. Control 41(9), 1256–1270 (1996)

    Article  MathSciNet  Google Scholar 

  30. Wood, R.J., Avadhanula, S., Steltz, E., Seeman, M., Entwistle, J., Bachrach, A., Barrows, G., Sanders, S.: An autonomous palm-sized gliding micro air vehicle. IEEE Robot. Autom. Mag. 14(2), 82–91 (2007)

    Article  Google Scholar 

  31. Yang, Q., Yang, Z., Sun, Y.: Universal neural network control of mimo uncertain nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1163–1169 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 61673347, U1609214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinmin Yang.

Appendix

Appendix

Proof of Theorem 1

Considering a candidate Lyapunov function

$$ {V} = V_{p} + V_{\psi} $$
(48)

with

$$ {V_{p}} = \frac{1}{2}{r_{p}^{T}}{r_{p}}, \quad {V_{\psi}} = \frac{1}{2}r_{\psi}^{T}{r_{\psi}} $$
(49)

Recalling Eq. 29, the time derivative of Vpis given by

$$ \begin{array}{rl} \dot V_{p}=&{r_{p}^{T}} \dot {r_{p}^{T}}\\ =&-c_{p} {r^{T}_{p}} r_{p}+{r_{p}^{T}}{\Phi}_{p}-{r^{T}_{p}}\, \text{sgn} \left( r_{p}\right){\Theta}_{p}\\ \le& -c_{p} {r^{T}_{p}} r_{p}+ {\vert{{r^{T}_{p}}}\vert} {{\Theta}_{p}}-{r^{T}_{p}}\, \text{sgn} (r_{p}){\Theta}_{p}\\ \le& -c_{p} {r^{T}_{p}} r_{p} \end{array} $$
(50)

Further, Eq. 32 can be employed to obtain the derivative of Vψ

$$ \begin{array}{rl} \dot V_{\psi}=&r_{\psi}^{T} \dot r_{\psi}^{T}\\ =&- c_{\psi} r^{T}_{\psi} r_{\psi} + r^{T}_{\psi}{\Phi}_{\psi}- r^{T}_{\psi}\,\text{sgn} \left( r_{\psi} \right) {\Theta}_{\psi}\\ \le & -c_{\psi} r^{T}_{\psi} r_{\psi}+ {\vert r^{T}_{\psi}\vert}{\Theta}_{\psi}- r^{T}_{\psi} \,\text{sgn} \left( r_{\psi} \right){\Theta}_{\psi}\\ \le&-c_{\psi} r^{T}_{\psi} r_{\psi} \end{array} $$
(51)

Thus, the derivative of V is

$$ \begin{array}{l} \dot V=\dot V_{p} +\dot V_{\psi} \le -c_{\psi} r^{T}_{\psi} r_{\psi} -c_{p} {r^{T}_{p}} r_{p} \le c V \end{array} $$
(52)

where c = min{2cp, 2cψ}. Solving Eq. 52 generates

$$ 0\le V \le V(0)e^{-ct} $$
(53)

where \(V(0)=\frac {1}{2}({r_{p}^{T}}(0)r_{p}(0)+r_{\psi }^{T}(0)r_{\psi }(0))\)is the initial value.

Obviously, V → 0 as t. This implies that rp, rψ → 0ast. Subsequently, the tracking error \(\delta _{p_{i}}\)and \(\delta _{\psi _{i}}\)defined in Eqs. 16 and 23 also converge to zero asymptotically by definition. Thus, the closed-loop system can asymptotically track the reference trajectories pdandψd. With the help of Eq. 18 and Assumption 1 − 2,v and Tz are bounded. Rη and Qη are also bounded since \(-\frac {\pi }{2}< \theta , \phi < \frac {\pi }{2}\). Similarly, the signals ωx, ωy and \(\dot T_{z}\) are all bounded according to Eq. 18. Through Eq. 25, one can reach that ωz is bounded, and so is \(\dot Q_{\eta }\). Thus,the two control inputs τ and \(\ddot T_{z}\)are also boundedfrom Eq. 33. □

Proof of Theorem 2

Consider the following Lyapunov function candidate

$$ {\overline V} = \overline{V}_{p} + \overline{V}_{\psi} $$
(54)

with

$$ {\overline V_{p}} = \frac{1}{2}{r_{p}^{T}}{r_{p}}+ {e_{p}^{T}}P{e_{p}}, \quad {\overline V_{\psi}} = \frac{1}{2}r_{\psi}^{T}{r_{\psi}} $$
(55)

Define the estimated filtered position tracking error as

$$ {\hat r_{p}} = {k_{{p_{0}}}}{\delta_{p_{0}} + {k_{{p_{1}}}}{\delta_{p_{1}}}{+ }{k_{{p_{2}}}}{\hat\delta_{p_{2}}}{+}\hat \delta_{p_{3}}} $$
(56)

If enforcing the output feedback controller (45), the filtered position tracking error dynamics (27) can be rewritten as

$$ \begin{array}{rl} {\dot r_{p}} =&-\tanh \left( \frac{\hat r_{p}}{\varepsilon_{p} }\right){\Theta}_{p}+{\Phi}_{p} +{k_{{p_{0}}}}{\delta_{p_{1}} + {k_{{p_{1}}}}{\delta_{p_{2}}}}\\ &+{k_{{p_{2}}}}{\delta_{p_{3}}}- {c_{p}}{ \hat r_{p}} - \left( {k_{p_{0}}}{\delta_{p_{1}}} + {k_{p_{1}}}{ \hat \delta_{p_{2}}}{+}{k_{p_{2}}}{\hat \delta_{p_{3}}}\right)\\ =&-\tanh \left( \frac{\hat r_{p}}{\varepsilon_{p} }\right){\Theta}_{p}+{\Phi}_{p}+(k_{p_{1}}+c_{p}k_{p_{2}})e_{p_{2}}\\ &+(k_{p_{2}}+c_{p})e_{p_{3}}-c_{p}r_{p} \end{array} $$
(57)

Thus, the derivative of \(\overline V_{p}\)can be given by

$$ \begin{array}{rl} {\dot {\overline V}}_{p} =& {r_{p}^{T}}{\dot r_{p}} + \dot {e_{p}^{T}}P{e_{p}} + {e_{p}^{T}}P{\dot e_{p}}\\ =&-{r_{p}^{T}}\tanh\left( \frac{\hat r_{p}}{\varepsilon_{p} }\right) {\Theta}_{p} +{r_{p}^{T}} {\Phi}_{p}+(k_{p_{1}}+c_{p}k_{p_{2}}){r_{p}^{T}}e_{p_{2}}\\ &+(k_{p_{2}}+c_{p}){r_{p}^{T}}e_{p_{3}}-c_{p} {r_{p}^{T}} r_{p}+ \dot {e_{p}^{T}}P{e_{p}} + {e_{p}^{T}}P{\dot e_{p}}\\ \end{array} $$
(58)

Substituting Eqs. 40 and 42 into Eq. 58 generates

$$ \begin{array}{rl} {\dot {\overline V}}_{p} =&-{r_{p}^{T}}\tanh \left( \frac{\hat r_{p}}{\varepsilon_{p} }\right){\Theta}_{p} +{r_{p}^{T}} {\Phi}_{p}-c_{p} {r_{p}^{T}} r_{p} \\ &+(k_{p_{1}}+c_{p}k_{p_{2}}){r_{p}^{T}}e_{p_{2}}+(k_{p_{2}}+c_{p}){r_{p}^{T}}e_{p_{3}}\\ &+ {e_{p}^{T}}({A^{T}}P + PA){e_{p}} + 2 {e_{p}^{T}}PB{\Phi}_{p}\\ =&-{r_{p}^{T}}\tanh \left( \frac{\hat r_{p}}{\varepsilon_{p} }\right){\Theta}_{p}+{r_{p}^{T}} {\Phi}_{p}-c_{p} {r_{p}^{T}} r_{p} \\ &+(k_{p_{1}}+c_{p}k_{p_{2}}){r_{p}^{T}}e_{p_{2}}+(k_{p_{2}}+c_{p}){r_{p}^{T}}e_{p_{3}}\\ &-\lambda {e_{p}^{T}}{e_{p}} + 2 {e_{p}^{T}}PB{\Phi}_{p}\\ \end{array} $$
(59)

Meanwhile, by resorting to Lemma 1, it is apparent that for the vector\(r_{p} \in \mathbb {R}^{3}\) and a positive constant εp > 0,

$$\begin{array}{@{}rcl@{}} 0 &\le& {r_{p}^{T}}\left( {\text{sgn}} ({r_{p}}) -\tanh \left( \frac{{{r_{p}}}}{\varepsilon_{p}}\right)\right)\\ &=& {| {{r_{p}}} |} - {r_{p}^{T}}\tanh \left( \frac{{{r_{p}}}}{\varepsilon_{p} }\right) \le 3\kappa \varepsilon_{p} \end{array} $$
(60)

Thus, one further has

$$ \begin{array}{rl} {\dot {\overline V}}_{p} =&-{r_{p}^{T}}\tanh \left( \frac{\hat r_{p}}{\varepsilon_{p} }\right){\Theta}_{p} +{r_{p}^{T}} {\tanh} \left( \frac{r_{p}}{\varepsilon_{p} }\right){\Theta}_{p}\\ & -{r_{p}^{T}} {\tanh} \left( \frac{r_{p}}{\varepsilon_{p} }\right){\Theta}_{p} + {r_{p}^{T}} \text{sgn} \left( {{ r}_{p}}\right){\Theta}_{p}\\ &-{r_{p}^{T}} \text{sgn} \left( {{ r}_{p}}\right){\Theta}_{p}+{r_{p}^{T}} {\Phi}_{p}-c_{p} {r_{p}^{T}} r_{p} \\ &+(k_{p_{1}}+c_{p}k_{p_{2}}){r_{p}^{T}}e_{p_{2}}+(k_{p_{2}}+c_{p}){r_{p}^{T}}e_{p_{3}}\\ &-\lambda {e_{p}^{T}}{e_{p}} + 2 {e_{p}^{T}}PB{\Phi}_{p}\\ \le&-{r_{p}^{T}}\tanh \left( \frac{\hat r_{p}}{\varepsilon_{p} }\right){\Theta}_{p}+{r_{p}^{T}} {\tanh} \left( \frac{r_{p}}{\varepsilon_{p} }\right){\Theta}_{p} \\ &+ 3\kappa\varepsilon_{p}{\Theta}_{p}-{r_{p}^{T}} \text{sgn} \left( {{ r}_{p}}\right){\Theta}_{p}+{r_{p}^{T}} {\Phi}_{p}-c_{p} {r_{p}^{T}} r_{p} \\ &+(k_{p_{1}}+c_{p}k_{p_{2}}){r_{p}^{T}}e_{p_{2}}+(k_{p_{2}}+c_{p}){r_{p}^{T}}e_{p_{3}}\\ &-\lambda {e_{p}^{T}}{e_{p}} + 2 {e_{p}^{T}}PB{\Phi}_{p}\\ \le&3\kappa\varepsilon_{p}{\Theta}_{p}+{r_{p}^{T}}\left( {\tanh} \left( \frac{r_{p}}{\varepsilon_{p} }\right)-\tanh \left( \frac{\hat r_{p}}{\varepsilon_{p} }\right)\right){\Theta}_{p} \\ &(k_{p_{1}}+c_{p}k_{p_{2}}){r_{p}^{T}}e_{p_{2}}+(k_{p_{2}}+c_{p}){r_{p}^{T}}e_{p_{3}}\\ &-c_{p} {r_{p}^{T}} r_{p}-\lambda {e_{p}^{T}}{e_{p}} + 2 {e_{p}^{T}}PB{\Phi}_{p}\\ \end{array} $$
(61)

With the help of Young’s inequality and the fact that | tanh(⋅)|≤ 1, Eq. 61 results in

$$ \begin{array}{rl} {\dot {\overline V}}_{p} \le&3\kappa\varepsilon_{p}{\Theta}_{p}+\frac{{{r_{p}^{T}}{r_{p}}}}{{2{\varepsilon_{1}}}} + 6{\varepsilon_{1}}{{\Theta}_{p}^{2}}-c_{p} {r_{p}^{T}} r_{p}\\ & +\left( {k_{{p_{1}}}}+{c_{p}}{k_{{p_{2}}}}\right)\left( \frac{{{r_{p}^{T}}{r_{p}}}}{{2{\varepsilon_{2}}}} + \frac{{\varepsilon_{2}}e_{{p_{2}}}^{T}{e_{{p_{2}}}}}{2}\right)\\ &+ ({k_{{p_{2}}}}+{c_{p}})\left( \frac{{{r_{p}^{T}}{r_{p}}}}{{2{\varepsilon_{3}}}} + \frac{\varepsilon_{3} e_{p_{3}}^{T} e_{p_{3}}}{2}\right)-\lambda {e_{p}^{T}}{e_{p}}\\ &+\varepsilon_{4} {e_{p}^{T}}e_{p}+\frac{{\Vert {PB{\Phi}_{p} } \Vert^{2}}}{\varepsilon_{4}}\\ \le& -\left( c_{p}-\frac{1}{2\varepsilon_{1}}-\frac{{k_{{p_{1}}}}+{c_{p}}{k_{{p_{2}}}}}{2\varepsilon_{2}} - \frac{ k_{p_{2}}+c_{p} } {2\varepsilon_{3}}\right){r_{p}}^{T}{r_{p}}\\ &- \left( \lambda - \frac{(k_{p_{1}}+c_{p}k_{p_{2}})\varepsilon_{2}}{2} -\frac{(k_{p_{2}}+c_{p})\varepsilon_{3}}{2} - {\varepsilon_{4}}\right){e_{p}^{T}}{e_{p}}\\ &+ 3\kappa\varepsilon_{p}{\Theta}_{p}+ 6{\varepsilon_{1}}{{\Theta}_{p}^{2}}+\frac{{\Vert {PB{\Phi}_{p} } \Vert^{2}}}{\varepsilon_{4}} \end{array} $$
(62)

where ∥⋅∥denotes the L2-norm,and ε, ε1, ε2, ε3, ε4\(\in \mathbb {R}^{+}\).

Similarly, with the controlled designed in Eq. 45, the filtered orientation tracking error dynamics can be rephrased tobe

$$ \begin{array}{ll} {\dot r_{\psi} } = & - {c_{\psi} }{r_{\psi} - {\tanh} \left( \frac{{r_{\psi} }}{\varepsilon_{\psi}} \right){\Theta}_{\psi}+{\Phi}_{\psi} } \end{array} $$
(63)

Hence, the derivative of \(\overline V_{\psi }\) can be given by

$$ \begin{array}{rl} {\dot {\overline V}}_{\psi} =& r_{\psi}^{T}{\dot r_{\psi}}=- r_{\psi}^{T}\tanh \left( \frac{{r_{\psi} }}{\varepsilon_{\psi}} \right){\Theta}_{\psi}+r_{\psi}^{T}{\Phi}_{\psi}- {c_{\psi} }r_{\psi}^{T}{r_{\psi} }\\ \le& - {c_{\psi} }r_{\psi}^{T}{r_{\psi} }+\kappa\varepsilon_{\psi}{\Theta}_{\psi} \end{array} $$
(64)

Combining Eq. 62 with Eq. 64 delivers

$$ \begin{array}{rl} \dot {\overline V}\le & -\left( c_{p}-\frac{1}{2\varepsilon_{1}}-\frac{{k_{{p_{1}}}}+{c_{p}}{k_{{p_{2}}}}}{2\varepsilon_{2}} - \frac{ k_{p_{2}}+c_{p} } {2\varepsilon_{3}}\right){r_{p}}^{T}{r_{p}}\\ &- \left( \lambda - \frac{(k_{p_{1}}+c_{p}k_{p_{2}})\varepsilon_{2}}{2} -\frac{(k_{p_{2}}+c_{p})\varepsilon_{3}}{2} - {\varepsilon_{4}}\right){e_{p}^{T}}{e_{p}}\\ &- {c_{\psi} }r_{\psi}^{T}{r_{\psi} }\!+\kappa\left( 3\varepsilon_{p}{\Theta}_{p}+\varepsilon_{\psi}{\Theta}_{\psi}\right)\,+\, 6{\varepsilon_{1}}{{\Theta}_{p}^{2}}\,+\,\frac{{\Vert {PB{\Phi}_{p} } \Vert^{2}}}{\varepsilon_{4}}\\ \le&-c_{p_{1}}{r_{p}}^{T}{r_{p}}-c_{p_{2}}{e_{p}^{T}}{e_{p}}-c_{\psi}r_{\psi}^{T}{r_{\psi} }+ C \end{array} $$
(65)

where \(c_{p_{1}}\),\(c_{p_{2}}\), C\(\in \mathbb {R}^{+}\)with

$$ \begin{array}{rl} c_{p_{1}}=&c_{p}-\frac{1}{2\varepsilon_{1}}-\frac{{k_{{p_{1}}}}+{c_{p}}{k_{{p_{2}}}}}{2\varepsilon_{2}} - \frac{ k_{p_{2}}+c_{p} } {2\varepsilon_{3}}\\ c_{p_{2}}=&\lambda - \frac{(k_{p_{1}}+c_{p}k_{p_{2}})\varepsilon_{2}}{2} -\frac{(k_{p_{2}}+c_{p})\varepsilon_{3}}{2} - {\varepsilon_{4}}\\ C=&\kappa\left( 3\varepsilon_{p}{\Theta}_{p}+\varepsilon_{\psi}{\Theta}_{\psi}\right)+ 6{\varepsilon_{1}}{{\Theta}_{p}^{2}}+\frac{{\Vert {PB{\Phi}_{p} } \Vert^{2}}}{\varepsilon_{4}} \end{array} $$
(66)

Hence, \(\dot {\overline V}\)will becomes negative as long as

$$ r_{p} \notin {\Omega}_{r_{p}}=\left\{ r_{p}\bigg{|}{\Vert r_{p} \Vert} \le \sqrt{\frac{C}{c_{p_{1}}}} \right\} $$
(67)

or

$$ e_{p} \notin {\Omega}_{e_{p}}=\left\{ e_{p}\bigg{|}{\Vert e_{p} \Vert} \le \sqrt{\frac{C}{c_{p_{2}}}} \right\} $$
(68)

or

$$ r_{\psi} \notin {\Omega}_{r_{\psi}}=\left\{ r_{\psi}\bigg{|}{\Vert r_{\psi} \Vert} \le \sqrt{\frac{C}{c_{\psi}}} \right\} $$
(69)

According to the standard Lyapunov analysis, one has that the filtered tracking errorsrp, rψ, and theobserver error epare uniformly ultimately bounded (UUB). Furthermore, the tracking errors can be arbitrarily reduced by increasing control gainscψ, cp, h1, h2andh3. By following the similar analysisin Proof of Theorem 1, the signals Tz, \(\dot T_{z}\),ω are bounded as well asall the elements of Rη, Qηand\(\dot Q_{\eta }\). Furthermore, theestimation signals \(\hat \delta _{p_{2}}\),\(\hat \delta _{p_{3}}\)and\(\hat r_{p}\)are bounded since the observererror vector epis bounded.Thus, the control signals \(\ddot T_{z}\)and τ are proved to bebounded from Eq. 45. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, Q. & Sun, Y. Robust State and Output Feedback Control of Launched MAVs with Unknown Varying External Loads. J Intell Robot Syst 92, 671–684 (2018). https://doi.org/10.1007/s10846-018-0774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0774-z

Keywords

Navigation