Skip to main content
Log in

A Single-Actuated Swimming Robot: Design, Modelling, and Experiments

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper describes and investigates a simple swimming mechanism, which comprises two concentric bodies and two passive flaps. The mechanism propels itself forward by oscillating its inner body in a symmetric fashion using a single actuator. Using a few assumptions, we develop a simplified model to investigate the dynamics of the robot and to simulate its motion. Numerical simulations show the effect of design parameters and control inputs on the locomotion performance. Next, we show how changing the control input from symmetric to asymmetric oscillations leads to a turning motion, still using only a single motor. By modulating the asymmetry in the oscillatory input, the turning radius changes. We conclude with a validation of our model with a proof-of-concept prototype showing similar swimming motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kastner, R., Lin, A., Schurgers, C., Jaffe, J., Franks, P., Stewart, B. S.: Sensor platforms for multimodal underwater monitoring. In: 2012 Int. Green Comput. Conf. (IGCC), pp. 1–7 (2012)

  2. Jaffe, J. S. et al.: A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics. Nat. Commun. 8, 14189 (2017)

    Article  Google Scholar 

  3. Mazumdar, A., Asada, H. H.: Control-configured design of spheroidal, appendage-free, underwater vehicles. IEEE Trans. Robot. 30(2), 448–460 (2014)

    Article  Google Scholar 

  4. Kelly, S. D., Fairchild, M. J., Hassing, P. M., Tallapragada, P.: Proportional heading control for planar navigation: The Chaplygin beanie and fishlike robotic swimming. Am. Control Conf., pp. 4885–4890 (2012)

  5. Tallapragada, P., A swimming robot with an internal rotor as a nonholonomic system. Am. Control Conf., pp. 657–662 (2015)

  6. Stackpole, E., Lang, D.: OpenROV. [Online]. Available: http://openrov.com (2012)

  7. Diller, E., Zhuang, J., Zhan Lum, G., Edwards, M. R., Sitti, M.: Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 104(17), 174101 (2014)

    Article  Google Scholar 

  8. Ye, Z., Sitti, M.: Rotating magnetic miniature swimming robots with multiple flexible flagella. IEEE Trans. Robot. 30(1), 3–13 (2014)

    Article  Google Scholar 

  9. Huang, C., Lv, J., Tian, X., Wang, Y., Yu, Y., Liu, J.: Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci. Rep. 5, 17414 (2015)

    Article  Google Scholar 

  10. Sfakiotakis, M., Lane, D. M., Davies, J. B. C., Bruce, J., Davies, C.: Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24(2), 237–252 (1999)

    Article  Google Scholar 

  11. Crespi, A., Ijspeert, A. J.: AmphiBot II: An amphibious snake robot that crawls and swims using a central pattern generator. In: Proc. 9th Int. Conf. Climbing Walk. Robot. (CLAWAR 2006), pp. 19–27 (2006)

  12. Stefanini, C. et al.: A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers. Bioinspir. Biomim. 7(2), 25001 (2012)

    Article  Google Scholar 

  13. Kim, H. -J., Song, S. -H., Ahn, S. -H.: A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater. Struct. 22(1), 14007 (2013)

    Article  Google Scholar 

  14. Marchese, A. D., Onal, C. D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)

    Article  Google Scholar 

  15. Liu, J., Hu, H.: Biological Inspiration: From carangiform fish to multi-joint robotic fish. J. Bionic Eng. 7 (1), 35–48 (2010)

    Article  Google Scholar 

  16. Mason, R, Burdick, J: Construction and modelling of a carangiform robotic fish. In: Experimental Robotics VI, pp 235–242 (2000)

  17. Kim, B., Kim, D. -H., Jung, J., Park, J. -O.: A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Mater. Struct. 14(6), 1579–1585 (2005)

    Article  Google Scholar 

  18. Takagi, K. et al.: Development of a rajiform swimming robot using ionic polymer artificial muscles. In: Proc. 2006 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2006), pp. 1861–1866 (2006)

  19. Sareh, S., Rossiter, J., Conn, A., Drescher, K., Goldstein, R. E.: Swimming like algae: Biomimetic soft artificial cilia. J. R. Soc. Interface 10(78), 20120666 (2012)

    Article  Google Scholar 

  20. Yeom, S. -W., Oh, I. -K.: A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18(8), 85002 (2009)

    Article  Google Scholar 

  21. Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proc. 2007 IEEE Int. Conf. Robot. Autom. (ICRA 2007), pp. 4975–4980 (2007)

  22. Edd, J., Payen, S., Rubinsky, B., Stoller, M. L., Sitti, M.: Biomimetic propulsion for a swimming surgical micro-robot. In: Proc. 2003 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2003), pp. 2583–2588 (2003)

  23. Fukuda, T., Kawamoto, A., Arai, F., Matsuura, H.: Steering mechanism of underwater micro mobile robot. Proc. 1995 IEEE Int. Conf. Robot. Autom. (ICRA 1995), pp. 363–368 (1995)

  24. Degani, A.: Dynamic single actuator robot climbing a chute. Meccanica 51(5), 1227–1243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zarrouk, D., Fearing, R. S.: Controlled in-plane locomotion of a hexapod using a single actuator. IEEE Trans. Robot. 31(1), 157–167 (2015)

    Article  Google Scholar 

  26. Mohammadshahi, D., Yousefi-koma, A., Bahmanyar, S., Maleki, H.: Design, fabrication and hydrodynamic analysis of a biomimetic robot fish. Int. J. Mech. 2(4), 59–66 (2008)

    Google Scholar 

  27. Singh, S. N., Simha, A., Mittal, R.: Biorobotic AUV maneuvering by pectoral fins: Inverse control design based on CFD parameterization. IEEE J. Ocean. Eng. 29(3), 777–785 (2004)

    Article  Google Scholar 

  28. Purcell, E. M.: Life at low Reynolds number. Am. J. Phys 45(1), 3–11 (1977)

    Article  Google Scholar 

  29. Or, Y., Murray, R. M.: Dynamics and stability of a class of low Reynolds number swimmers near a wall. Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 79(4), 1–4 (2009)

    Article  Google Scholar 

  30. Kanso, E.: Swimming due to transverse shape deformations. J. Fluid Mech. 631, 127–148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hatton, R., Choset, H.: Geometric swimming at low and high Reynolds numbers. IEEE Trans. Robot. 29 (3), 615–624 (2013)

    Article  Google Scholar 

  32. Refael, G., Degani, A.: Momentum-driven single-actuated swimming robot. In: Proc. 2015 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2015), pp. 2285–2290 (2015)

Download references

Acknowledgments

The authors wish to thank Alon Danay for helping in prototyping and experiments, and Andy Ruina, Uri Shavit, Yizhar Or and Dan Liberzon for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Degani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refael, G., Degani, A. A Single-Actuated Swimming Robot: Design, Modelling, and Experiments. J Intell Robot Syst 94, 471–489 (2019). https://doi.org/10.1007/s10846-018-0776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0776-x

Keywords

Mathematics Subject Classification 2010

Navigation