Skip to main content
Log in

Mobile Robot Control and Navigation: A Global Overview

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a global overview of mobile robot control and navigation methodologies developed over the last decades. Mobile robots have been a substantial contributor to the welfare of modern society over the years, including the industrial, service, medical, and socialization sectors. The paper starts with a list of books on autonomous mobile robots and an overview of survey papers that cover a wide range of decision, control and navigation areas. The organization of the material follows the structure of the author’s recent book on mobile robot control. Thus, the following aspects of wheeled mobile robots are considered: kinematic modeling, dynamic modeling, conventional control, affine model-based control, invariant manifold-based control, model reference adaptive control, sliding-mode control, fuzzy and neural control, vision-based control, path and motion planning, localization and mapping, and control and software architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Authored Books

  1. Meystel, A.M.: Autonomous Mobile Robots: Vehicles with Cognitive Control. World Scientific, Singapore (1991)

    Google Scholar 

  2. Latombe, J.C.: Robot Motion Planning. Kluwer, Boston (1991)

    MATH  Google Scholar 

  3. Leonard, J.L.: Directed Sonar Sensing for Mobile Robot Navigation. Springer, Berlin (1992)

    MATH  Google Scholar 

  4. Jones, J.L., Flynn, A.M., Seiger, B.A.: Mobile Robots: Inspiration to Implementation. Peters A.K., Ltd/CRC Press, New York (1995)

    MATH  Google Scholar 

  5. Everett, H.R.: Sensors for Mobile Robots: Theory and Applications. Peters A.K. Ltd/CRC Press, New York (1995)

    Google Scholar 

  6. Borenstein, J., Everett, H.R., Feng, L.: Navigating Mobile Robots: Systems and Techniques. Peters A.K. Ltd/CRC Press, New York (1996)

    MATH  Google Scholar 

  7. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  8. Canny, J.: The complexity of Robot Motion Planning. MIT Press, Cambridge (1998)

    Google Scholar 

  9. Zhu, X., Kim, Y., Minor, M.A, Qiu, C.: Autonomous Mobile Robots in Unknown Outdoor Environments. CRC Press /Taylor and Francis Group, Boca Raton (2017)

    Google Scholar 

  10. Nehmzow, U.: Mobile Robotics: A Practical Introduction. Springer, London (2003)

    MATH  Google Scholar 

  11. Siegwart, R., Nourbakhsh, I.: Autonomous Mobile Robots. MIT Press, Cambridge (2005)

    Google Scholar 

  12. Cuesta, F., Ullero, A.: Intelligent Mobile Robot Navigation. Springer, Berlin (2005)

    MATH  Google Scholar 

  13. Berns, K., Von Puttkamer, E.: Autonomous Land Vehicles: Steps Towards Service Robots. Springer, Berlin (2009)

    Google Scholar 

  14. Dudek, G., Jenkin, M.: Computational Principles of Mobile Robotics. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  15. Cook, G.: Mobile Robots: Navigation, Control and Remote Sensing. Wiley, Hobolen (2011)

    Google Scholar 

  16. Berry, C.A.: Mobile Robotics for Multidisciplinary Study. Morgan & Claypool, San Rafael (2012)

    Google Scholar 

  17. Tiwari, R., Shukla, A., Kala, R.: Intelligent Planning for Mobile Robotics: Algorithmic Approaches. IGI Global, Hershey (2012)

    Google Scholar 

  18. Kelly, A.: Mobile Robots: Mathematics, Models, and Methods. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  19. Tzafestas, S.G.: Introduction to Mobile Robot Control. Elsevier, Inc., New York (2004)

    Google Scholar 

  20. Jaulin, L.: Mobile Robotics. ISTE Press-Elsevier, New York (2017)

    Google Scholar 

Edited Books

  1. Patnaik, S., Jain, L.C, Tzafestas, S.G., Resconi, G., Konar, A. (eds.): Innovations in Robot Mobility and Control. Springer, Berlin (2005)

    Google Scholar 

  2. Tzafestas, S.G. (ed.): Advances in Intelligent Autonomous Systems. Kluwer, Dordrecht/Boston (1999)

    MATH  Google Scholar 

  3. Driankov, D., Saffioti, A. (eds.): Fuzzy Logic Techniques for Autonomous Vehicle Navigation. Physica-Verlag, Heidelberg (2011)

    Google Scholar 

  4. Azad, A.K.M., Cowan, N.J., Tokhi, M.O., Virk, G.S., Eastman, R.D. (eds.): Adaptive Mobile Robotics. World Scientific, Singapore (2012)

    Google Scholar 

  5. Katevas, N. (ed.): Mobile Robotics in Healthcare. IOS Press, Amsterdam (2001)

    Google Scholar 

  6. Rembold, U. (ed.): Intelligent Autonomous Systems (IAS-4). IOS Press, Amsterdam (1995)

    Google Scholar 

  7. Faruk, E., Ceccareli, M. (eds.): Mobile Robots for Dynamic Environments. ASME Press, New York (2015)

    Google Scholar 

  8. Fujimoto, H., Tokhi, M.O., Mochiyama, H., Virk, G.S (eds.): Emerging trends in mobile robotics. World Scientific, Singapore (2010)

    Google Scholar 

  9. Topalov, A.V. (ed.): Recent Advances in Mobile Robotics. InTech, Open Access, Austria (2011)

    Google Scholar 

  10. Buchlo, J. (ed.): Mobile Robotics, Moving Intelligence. InTech, Austria (2000)

    Google Scholar 

Survey Papers

  1. Tai, L., Liu, M.: Deep learning in mobile robotics: from perception to control systems–a survey of why and why not. J. LATEX Class Files 14(8), 1–16 (2015)

    Google Scholar 

  2. Cao, Y.U., Fukunago, A.S., Kalug, A.B.: Cooperative mobile ro- botics: antecedents and directions. Auton. Robots 4, 1–23 (1997)

    Google Scholar 

  3. Yamauchi, Y.: A survey of pattern formation of autonomous robots: Asynchrony, obliviousness and visibility. J. Phys.-Conf. Ser. 473012016 (2013)

  4. Cunha, J.: A survey on machine learning in mobile robots. Elect. Telecommun. 5(3), 304–308 (2011)

    MathSciNet  Google Scholar 

  5. Bostelman, R., Hong, T., Marvel, J.: Survey research for performance measurement of mobile manipulators. J. Stand. Technol. 121, 342–366 (2016)

    Google Scholar 

  6. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Robotic Syst 10(12), 1–18 (2013)

    Google Scholar 

  7. Bandettini, A., Luporini, F., Viglietta, G.: A survey of open problems for mobile robots. Cornell University Library. arXiv:111.2259v1 [cs. RO] (2011)

  8. Medeiros, A.A.D.: A survey of control architectures for autono- mous mobile robots. J. Brazilian Comput. Soc. 4(3). (Online) (1998)

  9. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Robots 31, 299–316 (2011)

    Google Scholar 

  10. David, J., Manivanan, P.V.: Control of Truck-Trailer Mobile Robots: a Survey. Intelligent Service Robotics. Springer, Berlin, (Online) (2014)

    Google Scholar 

  11. Ivaldi, S., Padvis, V., Nori, F.: Tools for Dynamics Simulation of Robots: a Survey Based on User Feedback. arXiv:1402.750v1 [cs.RO] (2014)

  12. Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Foundations and Trends in Robotics. Now Publishers 4(1), 1–104 (2015)

    Google Scholar 

Journal Special Issues

  1. Madhavan, R., Scrapper, C., Kleiner, A. (eds.): Special issue: characterizing mobile robot localization and mapping. Auton. Robot. 27(4), 431–448 (2009)

  2. Petrovic, I. (ed.): Special issue: advanced mobile robotics. J. Comput. Inform. Technol. 17(1), 1–120 (2009)

  3. Tzafestas, S.G. (ed.): Special issue: autonomous mobile robots in health care services. J. Intell. Robotic Syst. 22(3–4), 177–374 (1998)

  4. Tzafestas, S.G. (ed.): Special issue: intelligent mobile robots. Adv. Robot. 12(4), 313–481 (1998)

  5. Tzafestas, S.G. (ed.): Special issue: research on autonomous robotic wheelchairs in Europe. IEEE Robot. Autom. Mag. 8(1), 4–65 (2001)

  6. Cetto, J.A., Freze, U., Tenorth, M. (eds.): Special issue: selected papers from 6th European conference on mobile robots. Robot. Auton. Syst. 69, 1–98 (2015)

  7. Lopez-Nicolas, G., Mezouar, Y. (eds.): Special issue: visual cont- rol of mobile robots. Robot. Auton. Syst. 62(11), 1611–1668 (2014)

  8. Lee, S., Menegatti, E., Lee (eds.): Special issue: intelligent auto- nomous systems. Robot. Auton. Syst. 62(11), 1669–1848 (2014)

  9. Nguyen, C.C., Zheng, Y.F. (eds.): Special issue: mobile robots. J. Robot. Syst. (Currently: Journal of Field Robotics) 14(4), 229–340 (1997)

  10. Chrysostomou, D., Goher, K., Muscato, G., Tokhi, U., Virk, G.S. (eds.): Special issue: real-world mobile robot systems. Int. J. Indust. Robot. 44(4), 393–563 (2017)

Mobile Robot Kinematics

  1. Muir, P.F., Neuman, C.P.: Kinematic modeling of wheeled mobile robots. J. Robot. Syst. 4(2), 281–329 (1987)

    Google Scholar 

  2. Killough, S.M., Pin, F.G.: Design of an omnidirectional and holonomic wheeled platform design. In: Proceedings of IEEE Conference on Robotics and Automation, pp 84–90, Nice (1992)

  3. Sidek, N., Sarkar, N.: Dynamic modeling and control of nonholonomic mobile robot with lateral slip. In: Proceedings of Seventh WSEAS International Conference on Signal Processing Robotics and Automation (ISPRA’08), pp 66–74, Cambridge (2008)

  4. Chakraborty, N., Ghosal, A.: Kinematics of wheeled mobile ro- bots on uneven terrain. Mech. Mach. Theor. 39, 1273–1287 (2004)

    MATH  Google Scholar 

  5. Ashmore, M., Barnes, N.: Omni-drive robot motion on curved paths: the fastest path between two points is not a straight line. In: Proceedings of 15th Australian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence (AI’02), pp 225–236. Springer, London (2002)

  6. Huang, L., Lim, Y.S., Li, D., Teoh, C.E.L.: Design and analysis of four-wheel omnidirectional mobile robot. In: Proceedings of Second International Conference on Autonomous Robots and Agents. Palmerston North, New Zealand (2004)

  7. Phairoh, T., Williamson, K.: Autonomous mobile robots using real time kinematic signal correction and global positioning robot control. In: Proceedings of IAJC-IJME International Conference on Engineering and Technology. Sheraton, Nashville, TN, Paper 087/IT304 (2008)

Mobile Robot Dynamics

  1. Sidek, S.N.: Dynamic Modeling and Control of Nonholonomic Wheeled Mobile Robot Subjected to Wheel Slip. PhD Thesis, Vanderbilt University, Nashville (2008)

  2. Williams, R.L. II, Carter, B.E., Gallina, P., Rosati, G: Dynamic model with slip for wheeled omni-directional robots. IEEE Trans. Robot. Autom. 18(3), 285–293 (2002)

    Google Scholar 

  3. Moret, E.N.: Dynamic Modeling and Control of a Car-Like Robot. MSc Thesis, Virginia Polytechnic Institute and State University. Blacksburg (2003)

  4. Handy, A., Badreddin, E.: Dynamic modeling of a wheeled mobile for identification, navigation and control. In: Proceedings of IMACS Conference on Modeling and Control of Technological Systems, pp 119–128, Lille (1992)

  5. Watanabe, K., Shiraishi, Y., Tzafestas, S.G., Tang, J., Fukuda, T.: Feedback control of an omnidirectional autonomous platform for mobile service robots. J. Intell. Robot. Syst. 22, 315–330 (1998)

    Google Scholar 

  6. Pin, F.G., Killough, S.M.: A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans. Robot. Autom. 10(4), 480–489 (1994)

    Google Scholar 

  7. Moore, K.L., Flann, N.S.: A six-wheeled omnidirectional autonomous mobile robot. IEEE Control Syst. Mag. 20(6), 53–66 (2000)

    Google Scholar 

Mobile Robot Control: Standard Controllers

  1. Kanayama, Y., Kimura, Y., Noguchi, T.: A stable tracking control method for a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 7, 1236–1241 (1991)

    Google Scholar 

  2. Tian, Y., Sidek, N., Sarkar, N.: Modeling and control of a nonholonomic wheeled mobile robot with wheel slip dynamics. In: Proceedings of IEEE Symposium on Computational Intelligence in Control and Automation, pp 7–14, Nashville (2009)

  3. Chang, C.F., Huang, C.I., Fu, L.C.: Nonlinear control of a wheeled mobile robot with nonholonomic constraints. In: Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics, pp 5404–5409, The Hague (2004)

  4. Ashoorizad, M., Barzamini, R., Afshar, A., Zouzdani, J.: Model reference adaptive path following for wheeled mobile robots. In: Proceedings of International Conference on Information and Automation (IEEE/ICIA’06), pp 289–294, Colombo (2006)

  5. Watanabe, K., Shiraishi, Y., Tang, J., Fukuda, T., Tzafestas, S.G.: Autonomous control for an omnidirectional mobile robot with feedback control system [Chapter 13]. In: Tzafestas, S.G (ed.) Advances in Intelligent Autonomous Systems, pp 289–308. Kluwer, Boston/Dordrecht (1999)

  6. Lee, S., Youm, Y., Chung, Y.: Control of car-like mobile robots for posture stabilization. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’99), pp 1745–1750, Kyongju (1999)

  7. Panimadai Ramaswamy, S.A., Balakrishnan, S.N.: Formation control of car-like mobile robots: a Lyapunov function based approach. In: Proceedings of 2008 American Control Conference, Seattle (2008)

Mobile Robot Control: Advanced Controllers

  1. Isidori, A.: Nonlinear Control Systems: an Introduction. Springer, Berlin/New York (1985)

    MATH  Google Scholar 

  2. Stotine, J.J., Li, W.: Applied Nonlinear Control. Prentice Hall, Engewood Cliffs (1991)

    Google Scholar 

  3. Brockett, R.W.: Asymptotic Stability and Feedback Stabilization: Differential Geometric Control Theory. Birkhauser, Boston (1983)

    MATH  Google Scholar 

  4. Yun, X., Yamamoto, Y.: On Feedback Linearization of Mobile Robots Technical Report (CIS). University of Pennsylvania, Department of Computer and Information Science (1992)

  5. Yang, E., Gu, D., Mita, T., Hu, H.: Nonlinear tracking control of a car-like mobile robot via dynamic feedback linearization. In: Proceedings of Control 2004. University of Bath, UK, [paper 1D-218] (2004)

  6. DeVon, D., Brett, T.: Kinematic and dynamic control of a wheeled mobile robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2125–2126, San Diego (2007)

  7. Astolfi, A.: Exponential stabilization of a wheeled mobile robot via discontinuous control. J. Dyn. Syst. Meas. Control 121, 121–126 (1999)

    Google Scholar 

  8. Reyhanoglu, M.: On the stabilization of a class of nonholonomic systems using invariant manifold technique. In: Proceedings of the 34th IEEE Conference on Decision and Control, pp 2125–2126, New Orlean (1995)

  9. Tayebi, A., Tadijne, M., Rachid, A.: Invariant manifold approach for the stabilization of nonholonomic chained systems: application to a mobile robot. Nonlinear Dyn. 24, 167–181 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Watanabe, K., Yamamoto, K., Izumi, K., Maeyama, S.: Underactuated control for nonholonomic mobile robots by using double integrator model and invariant manifold theory. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2862–2867, Taipei (2010)

  11. Peng, Y., Liu, M., Tang, Z., Xie, S., Luo, J.: Geometry stabilizing control of the extended nonholonomic double integrator. In: Proceedings of IEEE International Conference on Robotics and Biometrics, pp 926–931. Tianijn (2010)

  12. Izumi, K., Watanabe, K.: Switching manifold control for an extended nonholonomic double integrator. In: Proceedings of International Conference on Control and Automation Systems, pp 896–899. Kintex, Gyeonggi-do (2010)

Mobile Robot Adaptive and Robust Control

  1. Marino, R., Tomei, P.: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice Hall, Upper River (1995)

    MATH  Google Scholar 

  2. Marino, R.: Adaptive control of nonlinear systems: basic results and applications. IFAC-Rev. Control 21, 55–66 (1997)

    Google Scholar 

  3. Ashoorizad, M., Barzarnimi, R., Afshar, A., Jouzdani, J.: Model reference adaptive path following for wheeled mobile robots. In: Proceedings of International Conference on Information and Automation, pp 289–294, Colombo, (IEEE/ICIA2006) (2006)

  4. Alicja, M.: A new universal adaptive tracking control law for nonholonomic wheeled mobile robots moving in R 3 space. In: Proceedings of IEEE International Conference Robotics and Automation. Detroit (1999)

  5. Pourboghrat, F., Karlsson, M.P.: Adaptive control of dynamic mobile robots with nonholonomic constraints. Comput. Elect. Eng. 28, 241–253 (2002)

    MATH  Google Scholar 

  6. Gholipour, A., Dehghan, S.M., Ahmadabadi, M.N.: Lyapunov-based tracking control of non-holonomic mobile robot. In: Proceedings of 10th Iranian Conference on Electrical Engineering, vol. 3, pp 262–269, Tabriz (2002)

  7. Fetter Lages, W., Hemerly, E.M.: Adaptive liberalizing control of mobile robots. In: Kopacek, P., Pereira, C.E (eds.) Intelligent Manufacturing Systems-a Volume from IFAC Workshop, pp 23–29. Pergamon Press, Gramado (1998)

  8. Landau, Y.D.: Adaptive Control: The Model Reference Approach. Marcel Dekker, New York (1979)

    MATH  Google Scholar 

  9. Zhang, Y., Hong, D, Chung, J.H., Velinsky, S.: Dynamic model-based robust tracking control of differentially steered wheeled mobile robot. In: Proceedings of the American Control Conference, pp 850–855, Philadelphia (1988)

  10. Yang, J.M., Kim, J.K.: Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Robot. Autom. 15(3), 578–587 (1999)

    Google Scholar 

  11. Chwa, D.: Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans. Control Syst. Technol. 12(4), 637–644 (2004)

    Google Scholar 

Mobile Robot Fuzzy and Neural Control

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    MATH  Google Scholar 

  2. Kosko, B.: Neural Networks and Fuzzy Systems: a Dynamical System Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  3. Haykin, S.: Neural Network: a Comprehensive Foundation. Macmillan College Publishing. Upper Saddle River, New Jersey (1994)

    MATH  Google Scholar 

  4. Tzafestas, S.G. (ed.): Soft Computing and Control Technology. World Scientific Publishers, Singapore/London (1997)

    MATH  Google Scholar 

  5. Omatu, S., Khalid, M., Yusof, R.: Neuro-Control and Its Applications. Springer, London/Berlin (1996)

    MATH  Google Scholar 

  6. Das, T., Narayan, K.I.: Design and implementation of a adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)

    Google Scholar 

  7. Castillo, O., Aguilar, L.T., Cardenas, S.: Fuzzy logic tracking control for unicycle mobile robots. Eng. Lett. 13(2), EL.13-2-4:73-77 (2006)

    Google Scholar 

  8. Driesen, B.J., Feddema, J.T., Kwok, K.S.: Decentralized fuzzy control of multiple nonholonomic vehicles. J. Intell. Robot. Syst. 26, 65–78 (1999)

    Google Scholar 

  9. Moustris, G., Tzafestas, S.G.: A robust fuzzy logic path tracker for non-holonomic mobile robots. J. Artif. Intell. Tools 14(6), 935–965 (2005)

    Google Scholar 

  10. Tzafestas, S.G., Deliparashos, K.M., Moustris, G.P.: Fuzzy logic path tracking control for autonomous non-holonomic robots: design of system on a chip. Robot. Auton. Syst. 58, 1017–1027 (2010)

    Google Scholar 

  11. Moustris, G.P., Deliparashos, K.M., Tzafestas, S.G.: Feedback equivalence and control of mobile robots through a scalable FPGA architecture. In: Veleninov Topalov, A. (ed.) Recent Advances in Mobile Robotics. InTech (2011). www.interchopen.com/books

  12. Rigatos, G.G., Tzafestas, C.S., Tzafestas, S.G.: Mobile robot motion control in partially unknown environments using a sliding-mode fuzzy-logic controller. Robot. Auton. Syst. 33, 1–11 (2000)

    Google Scholar 

  13. Moustris, G., Tzafestas, S.G.: Switching fuzzy tracking control for the Dubins car. Control Eng. Prac. 19 (1), 45–53 (2011)

    Google Scholar 

  14. Rigatos, G.G., Tzafestas, S.G., Evangelidis, G.J.: Reactive parking control of nonholonomic vehicles via a fuzzy learning automation. IEE Proc. Control Theory 148(2), 169–179 (2001)

    Google Scholar 

  15. Lewis, F.L., Campos, J., Selmic, R.: Neuro-Fuzzy Control of Industrial Systems with Actuator Nonlinearities. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

  16. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. J. Robot Syst. 14(3), 149–163 (1997)

    MATH  Google Scholar 

Mobile Robot Vision-Based Control

  1. Haralik, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison Wesley, Reading (1993)

    Google Scholar 

  2. Corke, P.: Visual control of robot manipulators: a review. In: Hashimoto, K (ed.) Visual Serving, pp 1–31. Word Scientific, Singapore (1993)

  3. Tsakiris, D., Samson, C., Rives, P.: Vision-based time–varying stabilization of a mobile manipulator. In: Proceedings of Fourth International Conference on Control, Automation, Robotics and Vision (ICARV’96). Westin Stamford, Singapore (1996)

  4. Cherubini, A., Chaumette, F., Oriolo, G.: A position-based visual servoing scheme for following paths with nonholonomic robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), pp 1648–1654, Nice (2008)

  5. Burshka, D., Hager, G.: Vision-based control of mobile robots. In: Proceedings of 2001 IEEE International Conference on Robotics and Automation, pp 1707–1713, Seoul (2001)

  6. Cherubini, A., Chaumette, F., Oriolo, G.: An image-based visual servoing scheme for following paths with nonholonomic mobile robots. In: Proceedings of International Conference on Control Automation, Robotics and Vision, pp 108–113, Hanoi (2008)

  7. Das, A.K., Fierro, R., Kumar, V., Southall, B., Spletzer, J., Taylor, C.J.: Real-time vision-based control of a nonholonomic mobile robot. In: Proceedings of 2001 IEEE International Confe- rence on Robotics and Automation, pp 1714–1719, Seoul (2001)

  8. Carelli, R., Soria, C.M., Morrales, B.: Vision-based tracking control for mobile robots. In: Proceedings of Twelfth International Conference on Advanced Robotics (ICAR’05), pp 148–152, Seattle (2005)

  9. Maya-Mendez, M., Morin, P., Samson, C.: Control of a nonholonomic mobile robot via sensor-based target tracking and pose estimation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5612–5618, Beijing (2009)

  10. Abdelkader, H.H., Mezouar, Y., Andreff, N., Martinet, P.: Image-based control of mobile robot with central catadioptric cameras. In: Proceedings of 2005 IEEE International Conference on Robotics and Automation, pp 3533–3538, Barcelona (2005)

  11. Qian, J., Su, J.: Online estimation of image Jacobian matrix by Kalman-Bucy filter for uncalibrated stereo vision feedback. In: Proceedings of International Conference on Robotics and Automation (ICRA 2002), pp 562–567 (2002)

  12. Gans, N.R., Hutchinson, S.A.: A stable vision-based control scheme for nonholonomic vehicles to keep a landmark in the field of view. In: Proceedings of 2007 International Conference on Robotics and Automation, pp 2196–2200, Rome (2007)

  13. Lopez-Nicolas, G., Gans, N.R., Bhattacharya, S., Sagues, C., Guerrero, J.J., Hutchinson, S.: Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. IEEE Trans. Syst. Man Cybern. Cybern 40(4), 1115–1127 (2010)

    Google Scholar 

  14. Okamoto, J. Jr., Grassi, V. Jr.: Visual servo control of a mobile robot using omnidirectional vision. In: Proceedings of Mechatronics Conference 2002, pp. 413–422. University of Twente (2002)

  15. Gong, X.: Omnidirectional Vision for an Autonomous Surface Vehicle [Ph.D. dissertation]. Virginia Polytechnic Institute and State University (2008)

  16. Russel, S., Norwig, P.: Artificial Intelligence. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

Mobile Robot Path and Motion Planning

  1. Kumar, V., Zefran, M., Ostrowski, J.: Motion planning and control of robots. In: Nof, S (ed.) Handbook of Industrial Robotics, pp 295–315. New York, Wiley (1999)

  2. Lozano-Perez, T.: Spatial planning: a configuration space approach. IEEE Trans. Comput. 32(2), 108–120 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Erdmann, M., Lozano-Perez, T.: On multiple moving obstacles. Algorithmica 2(4), 477–521 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Fugimura, K.: Motion Planning in Dynamic Environments. Springer, Berlin/Tokyo (1991)

    Google Scholar 

  5. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Google Scholar 

  6. Sheu, P.C.Y., Xue, Q.: Intelligent Robotic Systems. World Scientific Publishers, Singapore/London (1993)

    Google Scholar 

  7. Gallina, P., Gasparetto, A.: A technique to analytically formulate and solve the 2-dimensional constrained trajectory planning for a mobile robot. J. Intell. Robot. Syst. 27(3), 237–262 (2000)

    Google Scholar 

  8. Hatzivasiliou, F.V., Tzafestas, S.G.: A path planning method for mobile robots in a structured environment. In: Tzafestas, S.G (ed.) Robotic Systems: Advanced Techniques and Applications. Kluwer, Dordrecht/Boston (1992)

  9. Garcia, E., De Santos, P.G.: Mobile-robot navigation with complete coverage of unstructured environment. Robot. Auton. Syst. 46, 195–204 (2004)

    Google Scholar 

  10. Safadi, H.: Local path planning using virtual potential field. Report COMP 765: Spatial Representation and Mobile Robotics-Project. School of Computer Science, McGill University, Canada (2007)

  11. Ding, F.G., Jiang, P., Bian, X.Q., Wang, H.J.: AUV local path planning based on virtual potential field. In: Proceedings of IEEE International Conference on Mechatronics and Automation, vol. 4, pp 1711–1716, Niagara Falls (2005)

  12. Koren, Y., Borenstein, J.: Potential field methods and their inherent liminations for mobile robot navigation. In: Proceedings of IEEE Conference on Robotics and Automation, pp 1398–1404, Sacramento (2005)

  13. Borenstein, J., Koren, Y.: The vector field histogram: fast obstacle avoidance for mobile robots. IEEE J. Robot. Autom. 7(3), 278–288 (1991)

    Google Scholar 

  14. Wang, L.C., Yong, L.S., Ang Jr. M.R.: Hybrid of global path planning and local navigation implemented on a mobile robot in indoor environment. In: Proceedings of IEEE International Symposium on Intelligent Control, pp 821–826 (2002)

  15. Garrido, S., Moreno, L., Blanco, D., Jurewicz, P.: Path planning for mobile robot navigation using Voronoi diagram and fast marching. Int. J. Robot. Autom. 2(1), 42–64 (2011)

    Google Scholar 

  16. Garrido, S., Moreno, L., Blanco, D.: Exploration of a cluttered environment using Voronoi transform and fast marching. Robot. Auton. Syst. 56(12), 1069–1081 (2008)

    Google Scholar 

  17. Arney, T.: An efficient solution to autonomous path planning by approximate cell decomposition. In: Proceedings of International Conference on Information and Automation for Sustainability (ICIAFS 07), pp 88–93, Colombo (2007)

  18. Katevas, N.I., Tzafestas, S.G., Pnevmatikatos, C.G.: The approximate cell decomposition with local node refinement global path planning method: path nodes refinement and curve parametric interpolation. J. Intell. Robot. Syst. 22, 289–314 (1998)

    Google Scholar 

  19. Olunloyo, V.O.S., Ayomoh, M.K.O.: Autonomous mobile robot navigation using hybrid virtual force field concept. Eur. J. Sci. Res. 31(2), 204–228 (2009)

    Google Scholar 

  20. Katevas, N.I., Tzafestas, S.G., Matia, F.: Global and local strategies for mobile robot navigation. In: Katevas, N (ed.) Mobile Robotics in Healthcare. IOS Press, Amsterdam (2001)

  21. Katevas, N.I., Tzafestas, S.G.: The active kinematic histogram method for path planning of non-point non-holonomically constrained mobile robots. Adv. Robot. 12(4), 375–395 (1998)

    Google Scholar 

  22. Zelinsky, A., Jarvis, R.A., Byrne, J.C., Yuta, S.: Planning paths of complete coverage of an unstructured environment by a mobile robot. In: Proceedings of International Symposium on Advanced Robotics, Tokyo (1993)

  23. Zelinsky, A., Yuta, S.: A unified approach to planning, sensing and navigation for mobile robots. In: Proceedings of International Symposium on Experimental Robotics, Tokyo (1993)

  24. Choi, Y.H., Lee, T.K., Baek, S.-H., Oh, S.-Y.: Online complete coverage path planning for mobile robots based on linked spiral paths using constrained inverse distance transform. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5688–5712, St. Louis (2009)

Mobile Robot Localization and Mapping

  1. Papoulis, A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  2. Meditch, J.S.: Stochastic Optimal Linear Estimation and Control. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  3. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Englewood Cliffs, Prentice Hall (1979)

    MATH  Google Scholar 

  4. Borenstein, J., Everett, H.R., Feng, L.: Navigating Mobile Ro- bots: Sensors and Techniques. A.K. Peters Ltd, Wellesley (1999)

    Google Scholar 

  5. Adams, M.D.: Sensor Modeling Design and Data Processing for Automation Navigation. World Scientific, Singapore (1999)

    Google Scholar 

  6. Davis, E.R.: Machine Vision: Theory, Algorithms, Practicalities. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  7. Kleeman, L.: Advanced sonar and odometry error modeling for simultaneous localization and map building. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1866–1871, Sendai (2004)

  8. Betke, M., Gurvis, L.: Mobile robot localization using landmarks. IEEE Trans. Robot. Autom. 13(2), 251–263 (1997)

    Google Scholar 

  9. Hu, H., Gu, D.: Landmark-based navigation of industrial mobile robots. Int. J. Indust. Robot. 27(6), 458–467 (2000)

    Google Scholar 

  10. Andersen, C.S., Concalves, J.G.M.: Determining the Pose of a Mobile Robot Using Triangulation: a Vision Based Approach. Technical Report No. 1. European Union Joint Research Center (1995)

  11. Castellanos, J.A., Tardos, J.D.: Mobile Robot Localization and Map Building: a Multisensory Fusion Approach. Springer, Berlin (1999)

    Google Scholar 

  12. Guivant, J.E., Nebot, E.M.: Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans. Robot. Autom. 17(3), 242–257 (2001)

    Google Scholar 

  13. Rekleitis, I., Dudek, G., Milios, E.: Probabilistic cooperative localization and mapping in practice. Proc. IEEE Robot. Autom. Conf. 2, 1907–1912 (2003)

    Google Scholar 

  14. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM). Part I. IEE Robot. Autom. Mag. 13(2), 99–110 (2006). Part II, ibid, (3) 108–117

    Google Scholar 

  15. Rekleitis, I., Dudek, G., Milios, E.: Multirobot collaboration for robust exploration. Ann. Math. Artif. Intell. 31(1–4), 7–40 (2001)

    Google Scholar 

  16. Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process. 50(3), 736–746 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Rituerto, A., Puig, L., Guerrero, J.J.: Visual SLAM with an omnidirectional camera. In: Proceedings of Twentieth International Conference on Pattern Recognition (ICPR’10), pp 348–351, Istanbul (2010)

  18. Rigatos, G.G., Tzafestas, S.G.: Extended Kalman filtering for fuzzy modeling and multisensory fusion. Math. Comput. Model. Dyn. Syst. 13(3), 251–266 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Kim, J.M., Chung, M.J.: SLAM with omnidirectional stereo vision sensor. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 442–447, Las Vegas (2003)

Mobile Robot Intelligent Control and Software Architectures

  1. Saridis, G.N.: Toward the realization of intelligent controls. Proc. IEEE 8, 1115–1133 (1979)

    Google Scholar 

  2. Saridis, G.N.: Foundations of intelligent controls. In: Proceedings of IEEE Workshop on Intelligent Control, pp 23–28, Troy (1985)

  3. Meystel, A.M.: Architectures of intelligent control: The science of autonomous intelligence. In: Proceedings of IEEE International Symposium on Intelligent Control, pp 42–48, Chicago (1993)

  4. Meystel, A.M.: Multidirectional hierarchical decision support systems. IEEE Trans. Syst. Man Cybern.-Part C SMR-AR 33, 86–101 (2003)

    Google Scholar 

  5. Albus, J.S., Quintero, R.: Towards a reference model architecture for real-time intelligent control systems. In: Robotics and Manufacturing, vol. 3. ASME, New York (1990)

  6. Albus, J.M.: Outline for a theory of intelligence. IEEE Trans. Syst. Man Cybern. SMC-21(3), 473–509 (1991)

    MathSciNet  Google Scholar 

  7. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. RA-2, 14–23 (1986)

    Google Scholar 

  8. Brooks, R.A.: Intelligence Without Reason. AI Memo, No. 1293, AI Laboratory, MIT (1991)

  9. Arkin, R.C.: Motor schema-based mobile robot navigation. Int. J. Robot Res. 8(4), 92–112 (1989)

    Google Scholar 

  10. Arkin, R.C.: Cooperation without communication: multi-agent schema based robot navigation. J. Robot. Syst. 9(2), 351–364 (1992)

    Google Scholar 

  11. Simmons, R.G.: Concurrent planning and execution for autonomous robots. IEEE Control Syst. Mag. 12(1), 46–50 (1992)

    Google Scholar 

  12. Simmons, R.G.: Monitoring and error recovery for autonomous walking. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS’92). Raleigh (1992)

  13. Coste-Maniere, E., Simmons, R.: Architecture: The backbone of robotic systems. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA’2000), pp 67–72, San Francisco (2000)

  14. Xie, W., Ma, J., Yang, M.: Research on classification of intelligent robotic architecture. J. Comput. 7 (2), 450–457 (2012)

    Google Scholar 

  15. Saridis, G.N.: Analytical formulation of the principle of increasing precision and decreasing intelligence for intelligent machines. Automatica 25(3), 461–467 (1989)

    MATH  Google Scholar 

  16. Hayes-Roth, B.: A blackboard architecture for control. Artif. Intell. 26(3), 251–321 (1985)

    Google Scholar 

  17. Oreback, A., Christensen, H.L.: Evaluation of architectures for mobile robots. Auton. Robot. 14, 33–49 (2003)

    MATH  Google Scholar 

  18. Jawari, D., Deris, S., Mamat, R.: Software reuse for mobile robot applications through analysis patterns. Int. Arab J. Inform. Technol. 4(3), 220–228 (2007)

    Google Scholar 

  19. Canas, J.M., Ruiz-Ayucar, J., Aguero, C., Martin, F.: Jde-neoc: component oriented software architecture for robotics. J. Phys. Agents 1(1), 1–6 (2007)

    Google Scholar 

  20. Kerry, M.: Simplifying Robot Software Design Layer by Layer. National Instruments RTC Magazine. http://rtcmagazine.com/articles/view/102283 (2013)

  21. Katevas, N.I., Tzafestas, S.G., Koutsiouris, D.G., Pneumatikatos, C.G.: The SENARIO autonomous navigation system. In: Tzafestas, S.G. (ed.) Proceedings 1st MobiNet Symposium on Mobile Robotics Technology for Health Care Services, pp 87–89, Athens (1997)

  22. Laengle, T., Lueth, T.C., Remboldt, U., Woern, H.: A distributed control architecture for autonomous mobile robots: implementation of the Karlsruhe multi-agent robot architecture. Adv. Robot. 12(4), 411–431 (1998)

    Google Scholar 

  23. Fischer, C., Schmidt, G.: Multi-modal human-robot interface for interaction with a remotely operating mobile service robot (ROMAN). Adv. Robot. 12(4), 375–395 (1998)

    Google Scholar 

  24. Tzafestas, S.G.: Sociorobot World: A guided Tour for All. Springer, Berlin (2016)

    Google Scholar 

Point Stabilization, Path Planning/Following and Trajectory Tracking Control

  1. De Wit, C.C., Sordalen, O.: Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Autom. Control 37(11), 1791–1797 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Do, K., Jiang, Z., Pan, J.: Simultaneous tracking and stabilization of mobile robots: An adaptive approach. IEEE Trans. Autom. Control 49(7), 1147–1151 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Jiang, Z.-P., Nijmeijer, H.: Tracking control of mobile robots: a case study in backstepping. Automatica 33, 1393–1399 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Kostic, D., Adinandra, S., Caarls, J., Nijmeijer, H.: Collision-free tracking control of unicycle mobile robots. In: Proceedings of the IEEE Conference on Decision and Control, pp 5667–5672 (2009)

  5. Kant, K., Zuckler, S.: Toward efficient trajectory planning: the path-velocity decomposition. Int. J. Robot. Res. 5, 72–89 (1986)

    Google Scholar 

  6. Tzafestas, S.G., Stamou, G.: A fuzzy path planning algorithm for autonomous robots moving in an unknown and uncertain environment. In: Proceedings of European Robotics and Intelligent Sys- tems Conference (EURISCON’94), pp 140–149, Malaga (1994)

  7. Katevas, N., Sgouros, N.-M., Tzafestas, S.G., Papakonstantinou, G., Beatie, G., Bishop, G., Tsanakas, P., Koutsouris, D.G.: The autonomous mobile robot SENARIO: a sensor-aided intelligent navigation system for powered wheel chairs. IEEE Robot. Autom. Mag. 4(4), 60–70 (1997)

    Google Scholar 

  8. Samson, C.: Control of chained systems application to path following time-varying point-stabilization of mobile robots. IEEE Trans. Autom. Control 40(1), 64–77 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Aguilar, A., Hespanha, J.: Trajectory tracking and path following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Coelho, P., Nunes, U.: Path following control of mobile robots in the presence of uncertainties. IEEE Trans. Robot. 21(2), 252–261 (2005)

    Google Scholar 

  11. Deliparaschos, K.M, Moustris, G.P., Tzafestas, S.G.: Autonomous SoC for fuzzy robot path tracking. In: Proceedings of EUCA European Control Conference (ECC’2007), pp 5471–5478. Kos (2007)

  12. Skoundrianos, E.N., Tzafestas, S.G.: Mobile robot modeling using local model networks. In: Proceedings of EUCA European Control Conference (ECC’2003), Cambridge (2003)

  13. Zavlangas, P.G., Tzafestas, S.G.: Hierarchical motion control system for mobile robot path planning and navigation. In: Proceedings of 2002 Japan-USA Symposium on Flexible Automation (JUSFA’2002). Tokyo (2002)

  14. Akkizidis, I.S., Tzafestas, S.G.: Navigation of a mobile robot using fuzzy clustering techniques. In: Proceedings of 11th International Workshop on Robotics in Alpe-Adria-Danube Region. Balatonfared (2002)

  15. Tzafestas, C.S., Tzafestas, S.G.: Full-state modeling, motion planning and control of mobile manipulators. Stud. Inf. Control 10(2), 109–127 (2001)

    Google Scholar 

  16. Tzafestas, S.G., Melfi, A., Krikochoritis, A.: Omnidirectional mobile manipulator modeling and control: analysis and simulation. Syst. Anal. Model. Control 40, 329–364 (2001)

    MATH  Google Scholar 

  17. Moustris, G.P., Deliparaschos, K.M., Tzafestas, S.G.: Tracking control using the strip-wise affine transformation: an experimental SoC design. In: Proceedings of EUCA European Control Conference. Budapest, Hungary, [paper MoC3.5] (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros G. Tzafestas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzafestas, S.G. Mobile Robot Control and Navigation: A Global Overview. J Intell Robot Syst 91, 35–58 (2018). https://doi.org/10.1007/s10846-018-0805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0805-9

Keywords

Mathematics Subject Classification (2010)

Navigation