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Abstract
Four-bar linkage mechanisms have dragged the attention of many specialists due to its importance in the academic and
industrial sectors. Hence, a lot of research work has been conducted to understand their complex behavior and explore
various control techniques. In fact, such mechanisms possess highly nonlinear dynamics that require advanced nonlinear
control methods. In addition, the four-bar linkage mechanism is exposed to significant dynamic fluctuations at high speeds
due to the system inertias. In this paper, a backstepping control algorithm with a robust scheme is designed and applied on
the four-bar linkage mechanism to investigate and explore its dynamical performance under various operating conditions
and without a priori knowledge of the model parameters. Five operating conditions are introduced and tested in numerical
simulations to show that the proposed nonlinear controller successfully regulates and tracks the speed of the driving link of
the mechanism and shows a satisfactory performance.
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Nomenclature List
B vicious damping at motor bearing
C torsional damping coefficient
cmi center of mass of the ith link
ia motor armature current
J moment of inertia of the motor rotor and gear
Ji moment of inertia of the ith link
K torsional spring constant
kb motor electromotive force voltage constant
ke positive control gain
km motor torque constant
ko positive control gain
kη positive control gain
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La motor armature inductance
Li length of inertia of the ith link
mi mass of inertia of the ith link
n gear ratio
Ra motor rotor armature resistor
ri location of the center of mass of the ith link
T total applied torque on the leading link (i.e., link 2)
TL mechanical load torque
Tm motor output torque
Va applied armature voltage
ε1 arbitrary small positive constant
ε2 arbitrary small positive constant
εi arbitrary small positive constant
εx arbitrary small positive constant
λ1 positive constant
λ2 positive constant
λ3 positive constant
σ small positive constant
φ̈i angular acceleration of the ith link
φ̇i angular velocity of the ith link
φi angular displacement of the ith link

1 Introduction

Four-bar linkage mechanisms are used in most moving
machinery. Their simple mechanical design facilitates their
use for path generation. For example, any change in the
lengths of the bars or the driving angle will dramatically
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affect the final output position, speed, and path. Moreover,
the four-bar linkage mechanism is used in a variety
of industrial applications such as rigid-body guidance,
reciprocating compressor, rotary engine, scotch yoke, rope
climbing robot, and robot end-effect gripper [10, 22, 29, 31].
Such mechanisms certainly are utilized to generate different
motion patterns in comparison with actuators’ motion [6,
9, 29]. In biomedical engineering, these mechanisms are
employed to accomplish high-precision motion i.e., micro-
surgery applications) [4, 11, 14]. Many design difficulties
could be created from such mechanisms; for example, the
accuracy of the end-point positioning of a robot arm is
considerably small because of the accumulated error from
each revolute joint of the robot. In addition, having a
poor mechanical stiffness will result in deterioration in the
accuracy of the motion tracking [29, Zhang et al. 2005].

The mathematical model of the four-bar mechanism is
well known. Nevertheless, it is assumed that the angular
velocity of the driving bar (i.e., the crank) is constant.
However, in practice this is almost impossible due to the
fluctuating inertia of the rotary unbalanced mechanism.
Hence, the angular speed of the crank in the four-bar
mechanism shows a periodically changing behavior due to
the continuous changes in inertia during the rotation of
rigid links forming the mechanism [7, 9]. This fluctuating
behavior results in a highly nonlinear, time-variant, and
complex dynamics of the four-bar system which makes the
control of such dynamics in real life a very complicated
task and a challenge to design a control law that makes the
four-bar mechanism follows a desired trajectory precisely
at high speeds. Other techniques were proposed to model
four-bar mechanisms such as [27, 28] where a parallelogram
closed-loop mechanism was implemented into an open-
loop robot structure to simplify the dynamics model of the
overall system. High motion tracking performance was thus
achieved by applying relatively simple control algorithms.
Later, the author of [5] improved the motion tracking
performance of the system by applying a mass redistribution
scheme. In his study, the structure of a robotic arm was first
reduced to dynamically equivalent point masses in order to
eliminate the gravitational term in the dynamic model. A
simple algorithm was then applied to control the system, and
satisfactory trajectory tracking was obtained.

Other researchers focused on the synthesis of mech-
anisms for tracking trajectories; which is a well-known
numerical optimization problem explored in depth in the
literature. For instance, the authors of [8] introduced a com-
puter programming-based design method of hybrid cam-
linkage generating path using the theoretical contour equa-
tion of the cam. Moreover, the authors of [20] employed
genetic algorithms for optimum synthesis of a four-bar link-
age mechanism and the authors of [3] described the process
of optimal synthesis of a four-bar linkage mechanism by

the method of variable controlled deviations with the appli-
cation of the differential evolution algorithm. On the other
hand, [26] proposed an integrated mechanism and con-
troller design approach to design variable input-speed servo
four-bar linkages. The dimensions of the links, the coun-
terweights, input speed trajectory, and controller parameters
were considered as the design variables to reduce the shak-
ing force and moment in order to improve the speed trajec-
tory tracking performance, and to minimize the motor power
dissipation. Finally, the authors of [24] presented a modified
harmony search algorithm for the synthesis of a four-bar
planar mechanism that follows a specific trajectory.

In fact, several operating methods, reported in the lit-
erature, are proposed to handle the complex nonlinear
behavior of four-bar mechanisms such as [2, 30]. In [17],
a proportional-derivative and neural adaptive superposed
control was used to compensate for the global error. In
[15], a control structure for the four-bar mechanism was
introduced that was composed of several sub-control algo-
rithms such as a model reference adaptive control, a dis-
turbance compensation loop, and a modified switching
controller, in addition to some feedback loops. In [14], an
enhanced adaptive motion tracking control methodology
without a feed-forward compensation was introduced for
piezo-actuated flexure-based four-bar micro/nano manipu-
lation mechanisms due to their nonlinear effect. Moreover,
Erenturk [7] proposed a fuzzy logic controller combined
with a gray system modeling approach to reduce the angu-
lar speed fluctuations in four-bar mechanisms driven by
a permanent magnet dc motor that is fed from a dc–dc
converter. Some other researchers such as [18] utilized intel-
ligent methods to operate and control four-bar mechanisms
due to the complexity of the dynamics. Recently, various
control schemes were tested and applied, in simulation,
for controlling the position and speed of a four-bar link-
age mechanism [1] where the performance and response
improvement were investigated thoroughly. In [1], a fil-
tered proportional-integral-derivative controller (FPIDC)
was tuned and implemented on the mechanism and then
compared with a filtered sliding mode controller (FSMC),
filtered fuzzy controller (FFC), and filtered genetic rein-
forcement neurocontroller (FGRNC). Moreover, in [23],
the authors introduced a new intelligent model-free motion
controller based on Fuzzy logic to improve robot motion
accuracy and dynamic performance. They used a para-
metric search mechanism to identify system parameters
with high accuracy. However, their method investigated
a case with relatively low time-varying speed trajectory
without any disturbances and/or parametric uncertainties.
In addition, the proposed method requires either costly
measuring devices or a complicated / inaccurate noisy
calculation as a replacement for the costly measuring
devices.
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In this manuscript a robust backstepping controller is
designed and tested, in simulation, to control the four-
bar linkage mechanism and to investigate the performance
under various operating conditions. It should be noted
that the proposed controller has never been explored or
introduced, in the literature, to operate such a mechanism.
The proposed robust scheme is utilized to facilitate
compensating for the uncertainties associated with the
system dynamics. As for the backstepping scheme, it is
a recursive Lyapunov-based scheme for strict feedback
systems [12, 19, 25, 33]. Backstepping controller guarantees
global or regional regulation and tracking criteria and
provides a systematic procedure for designing stabilizing
controllers, through a step by step algorithm. Moreover, it
can avoid cancelations of useful nonlinearities and achieve
stabilization and tracking [13]. Some other work introduced
combinations of different control schemes such as [16].
In this manuscript, the implementation of a new control
strategy is investigated and explored, in simulation, to
further study new methods of control and their impact on the
performance of a four-bar linkage mechanism under various
operating conditions. The proposed control technique, in
fact, does not require a priori knowledge of the model
parameters and that is the key contribution and novelty
of this work in addition to exploring new techniques of
control on the introduced mechanism. In the future, real-
time implementation shall be performed to validate the
proposed control theory.

The sections introduced in the manuscript are organized
as follows: Section 2 introduces the dynamics of the four-
bar linkage mechanism. The proposed robust backstepping
controller is introduced in Section 3 and representative
numerical results are presented and discussed in Section 4.
Finally, concluding remarks are presented in Section 5.

2 Dynamics of the Four Bar Linkage
Mechanism

Figure 1 shows a schematic of the four-bar linkage
mechanism introduced in this paper. As shown in Fig. 1,
the first link of the mechanism, L2, is driven by a geared
permanent magnet dc motor. The complete mathematical
model of the mechanism can be developed as reported in [1]

Referring to Fig. 1 and utilizing the torque equilibrium
and the kinetic-potential equations with Lagrange’s con-
straints along with Kirchoff’s voltage law for the geared
permanent magnet dc motor, the following mathematical
expressions can be obtained [7]
∑

T = nTm − nTL − n2Bφ̇2 − n2J φ̈2 = Aφ̈2

+1

2

dA

dφ2
φ̇2

2 + Kγ4 (φ4 − φ4(0)) + Cγ 2
4 φ̇2 (1)

Va = La

dia

dt
+ iaRa + nkbφ̇2 (2)

where the angular velocity of the ith link can be computed

by φ̇i = γiφ̇2 ∀ i = 2, 3, 4, γ2 = 1, γ3 = L2 sin
(
φ4−φ2

)

L3 sin
(
φ3−φ4

) ,

γ4 = L2 sin(φ3−φ2)

L4 sin
(
φ4−φ3

) , and φ4 = φ4 + π It should be noted

that L3 sin
(
φ̇3 − φ̇4

)
, L4 sin

(
φ̇4 − φ̇3

)
, L3 sin2 (

φ̇3 − φ̇4
)
,

and L4 sin2 (
φ̇3 − φ̇4

)
do not equal to zero at any time. The

function A ∈ R and its first derivative with respect to the
angular displacement dA

dφ2
∈ R, can be computed as

dA

dφ2
� 2C1γ3

dγ3

dφ2
+ 2C2γ4

dγ4

dφ2
+ C3

{
dγ3

dφ2
cos (φ3−φ2)

− γ3 sin (φ3 − φ2) (γ3 − 1)

}
(3)

Fig. 1 A simplified schematic showing the complete four-bar linkage mechanism

329



where A � C0 + C1γ
2
3 + C2γ

2
4 + C3γ3 cos (φ3 − φ2),

C0 � J2 + m2r
2
2 + m3L

2
2, C1 � J3 + m3r

2
3 , C2 �

J4 + m4r
2
4 , C3 � 2m3r3L2, dγ3

dφ2
= L2(D1+D2)

L3 sin2(φ3−φ4)
, dγ4

dφ2
=

L2(D3+D4)

L4 sin2(φ3−φ4)
, D1 = (γ4 − 1) sin (φ3 − φ4) cos (φ4 − φ2),

D2 = (γ4 − γ3) sin (φ4 − φ2) cos (φ3 − φ4),
D3 = (γ3 − 1) sin (φ3 − φ4) cos (φ3 − φ2), and
D4 = (γ4 − γ3) sin (φ3 − φ2) cos (φ3 − φ4) It should also
be noted that the motor torque is defined as Tm � kmia
and the parameters C and K in Eq. 1 are attached to the
follower to represent a general loading situation. The entire
mechanism is controlled by the applied armature voltage
(i.e., motor input voltage / controller output), Va(t), which
is affected indirectly by the armature current, ia(t). The
armature current, in turns, controls the induced torque of
the motor that operates the mechanism.

To facilitate the cont rol development, Eqs. 1 and 2 can
be reformulated as follows

Mẋ + f1 + g1 = ia (4)

La

dia

dt
+ Raia + Hx = Va (5)

where x (t) � φ̇2 (t) ∈ R is measurable, H � nkb ∈ R
+is

a constant, and M (x, t) � A+n2J
nkm

∈ R is a positive definite
function. It should be noted that the function M (x, t) can be
defined as a function of known and available quantities, ϒm

and an unknown/uncertain positive constants, 
m, such that
M � M (ϒm, 
m). The function f1 (x, t) ∈ R is defined as

f1 � 1

2nkm

dA

dφ2
x2+ C

nkm

γ 2
4 x+nB

km

x+ K

nkm

γ4 (φ4 − φ4(0))

(6)

and g1 � TL

km
∈ R

+ is a constant and assumed to be
always bounded. The function f1 (x, t) can be considered
as a function of known and available quantities denoted by
ϒ1 (t) ∈ R

1×4 and unknown/uncertain positive constants
denoted by 
1 ∈ R

4in the sense that f1 � f1 (ϒ1, 
1).

3 Robust Backstepping Controller
Formulation

In this section, a robust backstepping control algorithm
is introduced to regulate the output speed of the four-bar
linkage mechanism and track desired speed trajectories if
necessary under the presence of parametric uncertainties
and disturbance for different operating conditions. The
robustness feature is added to the controller to facilitate
compensating for the uncertainties associated with the
system dynamics. As a control objective, it is required to
ensure that the angular velocity of the leading link, x(t),
tracks the desired trajectory xd(t) ∈ R, and the armature

current, ia(t) tracks an auxiliary trajectory that represents
the desired armature current, iad(t) ∈ R, in the following
sense

{xd(t) − x(t)} ≤ εx and {iad (t) − ia(t)} ≤ εi as t → ∞
(7)

where εx, εi ∈ R
+ are arbitrary small constants. It should be

noted that the desired armature current is unknown a priori
and will be designed later so that it is bounded at all times
along with its first time derivative (i.e., iad ,

diad

dt
∈ L∞).

Hence, the following error signal definitions are utilized to
facilitate the controller design development

e � xd − x (8)

η � iad − ia . (9)

Based on the definitions in Eqs. 8 and 9, it is clear that if
|e(t)| ≤ εx and |η(t)| ≤ εi , then |xd(t) − x(t) | ≤ εx and
|iad(t) − ia(t)| ≤ εi as t → ∞, respectively, thus meeting
the control objectives.

The open-loop error system dynamics can be analyzed
by taking the first time derivative of Eqs. 8 and 9 and then
multiplying both sides of the resulting equations by M and
La , respectively. Thus, the system dynamics described in
Eqs. 4 and 5 can be substituted and then reformatted to
realize the following open-loop error system dynamics

Mė = M(ϒm, 
m)ẋd + f1(ϒ1, 
1) + g1 + η − iad (10)

Laη̇ � La

diad

dt
+ Raia + Hx − Va (11)

where Eqs. 4, 5, 8, and 9 were utilized. The expression in
Eq. 10, and after adding and subtracting M (ϒmd, 
m) ∈ R

and f1 (ϒ1d , 
1) ∈ R, can be further manipulated and
rewritten as

Mė = � + � + η − iad − 1

2
Ṁe (12)

where the parameters �, � ∈ R are defined as
� � M(ϒm, 
m)ẋd − M(ϒmd, 
m)ẋd + f1(ϒ1, 
1) −
f1(ϒ1d , 
1) + 1

2Ṁe and � � M(ϒmd, 
m)ẋd +
f1(ϒ1d , 
1) + g1. It should be noted that |�| can be upper
bounded such that |�| ≤ ρ1 (|e|) where ρ1 (|e|) ∈ R is
a non-decreasing function of its argument. In addition, the
terms ϒmd and ϒ1d ∈ R 1×4are defined to be the desired
forms of ϒm and ϒ1, respectively.

Based on the open-loop error system dynamics intro-
duced in Eq. 12, the following auxiliary control input (i.e.,
desired armature current) is designed

iad = �̂ + kee + koρ
2
1e + vR1 (13)

where �̂�M(ϒmd, 
̂m) ẋd +f1(ϒ1d , 
̂1)+ ĝ1 and ke, ko ∈
R

+are control gain constants. The parameters 
̂1 ∈ R
4 and
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ĝ1 ∈ R are constants and represent the best-guess estimates
of 
1 and g1, respectively The parameter vR1 (·) ∈ R is
a nonlinear robust term to compensate for the uncertain
dynamics and shall be designed to ensure differentiability.
Hence, the expression in Eq. 12, utilizing the auxiliary
control input design, iad (t), becomes

Mė = � + �̃ + η − kee − koρ
2
1e − 1

2
Ṁe − vR1 (14)

where �̃ � � − �̂. Based on the design introduced in
Eq. 13, the expression in Eq. 11 becomes

Laη̇ � La

{ ˙̂
� + keė + 2koρ1

∂ρ1

∂e
eė + koρ

2
1 ė + ∂vR1

∂e
ė

}

+Raia + Hx − Va (15)

where ˙̂
� � Ṁ(ϒmd, 
̂m) ẋd + M(ϒmd, 
̂m) ẍd +

ḟ1(ϒ1d , 
̂1). Note that ˙̂g1 = 0. The expression in Eq. 15
can be further manipulated and then reformulated to be

Laη̇ � f2 + g 2 − Va (16)

where the functions f2, g 2 ∈ R are defined as

f2 � La

{ ˙̂
� +

(
ke + 2koρ1

∂ρ1

∂e
e + koρ

2
1

+∂vR1

∂e

)
M−1 (f1 − ia)

}
+ Raia + Hx (17)

g 2�La

(
ke+2koρ1

∂ρ1

∂e
e + koρ

2
1 + ∂vR1

∂e

)(
ẋd +M−1g1

)

(18)

and Eqs. 4 and 8 were utilized. The function f2 (x, t) can be
considered as a function of known and available quantities
denoted by ϒ2 (t) ∈ R

1×8 and unknown/uncertain positive
constants denoted by 
2 ∈ R

8×1 in the sense that f2 �
f2 (ϒ2, 
2) Based on the open-loop error system dynamics
introduced in Eqs. 16 to 18, the following controller is
designed

Va = kηη + f2

(
ϒ2d , 
̂2

)
+ e + vR2 (19)

where kη ∈ R
+ is a control gain constant, 
̂2 ∈ R

8 is
constant and represent the best-guess estimate of 
2, and
ϒ2d ∈ R

1×8is defined to be the desired form of ϒ2. The
term vR2 (·) ∈ R is a nonlinear robust term to compensate
for the uncertain dynamics and shall be designed to ensure
differentiability. Hence, the expression in Eq. 16, utilizing
the control input design, Va (t), becomes

Laη̇ � f2 (ϒ2, 
2) − f2 (ϒ2d , 
2) + f2 (ϒ2d , 
2)

−f2

(
ϒ2d , 
̂2

)
+ g2 − kηη − e − vR2 (20)

where f2 (ϒ2d , 
2) is added and subtracted to Eq. 16.
In order to ensure the stability of the proposed control
system, a Lyapunov-based stability analysis is introduced.
Let P(z, t) ∈ R denote the following non-negative function

P � 1
2Me2 + 1

2Laη
2. (21)

Note that Eq. 21 is bounded as (refer to Theorem 2.14 of
[21])

λ1 ‖z(t)‖2 ≤ P(z, t) ≤ λ2 ‖z(t)‖2 (22)

where λ1, λ2 ∈ R
+ are constants and z

[
e, η

]T ∈
R

2 where e(t) and η(t) are defined in Eqs. 10 and 11,
respectively. After taking the first time derivative of the
expression in Eq. 21, then

Ṗ � e
{
� + �̃ + η − kee − koρ

2
1e − vR1

}

+η
{
f2 (ϒ2, 
2) − f2 (ϒ2d , 
2) + f2 (ϒ2d , 
2)

−f2

(
ϒ2d , 
̂2

)
+ g2 − kηη − e − vR2

}

(23)

where Eqs. 14 and 20 were utilized. Based on the expression
developed in Eq. 23, the nonlinear robust functions, vR1(t)

and vR2(t) can be designed as

vR1 = eρ2
2,s

‖e‖m ρ2,m + ε1
(24)

vR2 = ηρ2
3

|η| ρ3 + ε2
(25)

Table 1 Simulated cases introduced to investigate controller performance

Case Desired Tracking Trajectory [rpm] Disturbance [N.m]

I nd = 100 TL = 1

II nd = 100 TL = 1.3 − 0.025 cos (30πt) − 0.05 cos (20πt) − 0.05 cos (10πt)

−0.125 cos (16πt)

III nd = 10 sin (4πt) + 100 TL = 1

IV nd = 10 sin (4πt) + 100 TL = 1.3 − 0.025 cos (30πt) − 0.05 cos (20πt) − 0.05 cos (10πt)

−0.125 cos (16πt)

V nd = 10 sin (4πt) + 100 TL = 1.3 − 0.025 cos (30πt) − 0.05 cos (20πt) − 0.05 cos (10πt)

−0.125 cos (16πt)

and parametric uncertainties
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Table 2 Simulation parameter values for the introduced four-bar linkage mechanism

Parameter Value Unit Parameter Value Unit Parameter Value Unit

B 0.2 N.s/m K 5 N/m n 0.95 −
C 5 N.s/m L2 0.1349 m φ2 (0) 1.5708 Rad

J 0.011 kg.m2 L3 0.2997 m φ3 (0) 0.5196 Rad

J2 0.000269 kg.m2 L4 0.3251 m φ4 (0) 1.6443 Rad

J3 0.00219 kg.m2 La 0.014 H r2 0.0674 m

J4 0.00229 kg.m2 m2 0.09919 kg r3 0.1488 m

kb 0.26 V.s/rad m3 0.1794 kg r4 0.1625 m

km 0.26 – m4 0.1765 kg Ra 2 �

where ε1, ε2 ∈ R
+ are small constants, ρ2,s , ρ2,m ∈ R are

defined as ρ2,s � ρ2 (‖e‖s) and ρ2,m � ρ2 (‖e‖m) where
‖e‖s �

√
e2 + σ , ‖e‖m �

√
e2 + σ − √

σ , and σ ∈ R
+

is a small constant. It should be noted that �̃ ≤ ρ2 (|e|)
where |e| is bounded as ‖e‖s ≥ |e| ≥ ‖e‖m. The function
ρ3 (|e|) ∈ R is a non-decreasing function of its argument.
Moreover, the following inequalities are satisfied

e � − koρ
2
1e2 ≤ |e| ρ1 − koρ

2
1e2 ≤ 1

4ko

(26)

e �̃ ≤ |e| ρ2 (27)

η

{
f2 (ϒ2, 
2) − f2 (ϒ2d , 
2) + f2 (ϒ2d , 
2)

− f2

(
ϒ2d , 
̂2

)
+ g2

}
≤ |η| (c1 |η| + c2) ≤ |η| ρ3 (28)

where c1, c2 ∈ R
+ are constants. Based on the inequalities

introduced in Eqs. 26 to 28, the expression in Eq. 23 can be
upper bounded by

Ṗ ≤ −kee
2 − kηη

2 + 1

4ko

+|e| ρ2 − e vR1 +|η| ρ3 −η vR2 .

(29)

0 0.5 1 1.5 2 2.5 3
-50

0

50

100

150

Time [sec]

]
mpr[

deep
S

knar
C

Fig. 2 Crank speed open-loop response when 12V input voltage is
applied

Note that the following inequalities are satisfied based on
the design introduced in Eqs. 24 and 25

|e| ρ2 − e vR1 = |e| ρ2 − e2ρ2
2,s

‖e‖m ρ2,m + ε1
≤ ε1 (30)

|η| ρ3 − η vR2 = |η| ρ3 − η2ρ2
3

|η| ρ3 + ε2
≤ ε2 (31)

Hence, the function Ṗ (z, t) ∈ R obtained in Eq. 29 can be
upper bounded as

Ṗ ≤ −λ3 ‖z‖2 + ε (32)

where λ3 ≥ ke + kη and ε � 1
4ko

+ ε1 + ε2 and that satisfies
the globally ultimately bounded stability result.

4 Numerical Simulations

In this section, numerical results are presented in Mat-
lab/Simulink environment to demonstrate the effectiveness
and feasibility of using the proposed robust backstepping
controller, introduced in Eqs. 13, 19, 24, and 25, in regu-
lating and tracking a prescribed speed trajectory. It should
be noted that the capabilities of the modern hardware and
relatively slow dynamics of introduced mechanical system
allow the detailed controller design to be implemented with-
out concerns in the laboratory. Five cases are examined by

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

Time [sec]

]
A[tnerru

C
roto

M

Fig. 3 Motor current response when 12V input voltage is applied
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Table 3 Tuned gains for the proposed controller

Parameter Value Parameter Value

ε1 0.01 ρ1 100 |e|
ε1 0.01 ρ2,m ‖e‖m

ke 100 ρ2,s 100 ‖e‖s

kη 100 ρ3 100 |e|
ko 0.1 σ 0.1

the proposed controller in this section: (i) constant desired
speed trajectory with constant load torque disturbance, (ii)
constant desired speed trajectory with time-varying load
torque disturbance (iii) time-varying desired speed trajec-
tory with constant load torque disturbance, (iv) time-varying
desired speed trajectory with time-varying load torque dis-
turbance, and (v) time-varying desired speed trajectory with
time-varying load torque disturbance and parametric uncer-
tainties. More details about the proposed cases are shown in
Table 1.

It should be noted that cases II and IV are introduced to
more challenge the controller. However, Case V is the most
challenging case among all cases. In Case V, the system
parameters are set to vary with respect to time around
their original values by 5% for some parameters and 10%
for the others at different frequencies such that: La =
0.0007 sin(20πt) + 0.014, Ra = 0.1 cos(24πt) + 2, kb =
0.013 sin(30πt)+ 0.26, km = 0.013 cos(30πt)+ 0.26, J =
0.00055 cos(20πt) + 0.011, J2 = 0.0000269 sin(20πt) +
0.000269, J3 = 0.000219 cos(24πt) + 0.00219, J4 =
0.000229 sin(30πt) + 0.00229, L2 = 0.01349 sin(20πt) +
0.1349, L3 = 0.02997 cos(24πt) + 0.2997, L4 =
0.03251 sin(30πt) + 0.3251, m2 = 0.09919 sin(20πt) +
0.9919, m3 = 0.01794 cos(24πt) + 0.1794, m4 =
0.01765 sin(30πt) + 0.1765, r2 = 0.00674 sin(20πt) +
0.0674, r3 = 0.01488 cos(24πt) + 0.1488, r4 =
0.01625 sin(30πt) + 0.1625, C = 0.5 cos(20πt) + 5, K =
0.5 sin(20πt) + 5. Despite of the unrealistic parametric
conditions presented in Case V, it is introduced to mainly
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Fig. 4 Crank speed response for Case I
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Fig. 5 Speed tracking error for Case I

investigate the controller performance under the presence of
parametric uncertainties.

In order to have more realistic performance for all
introduced simulated tests, a band limited white noise of
power 1μ and sampling time of 100μsec is added to
all measurements. In addition, the motor rated voltage is
limited to ±24V. The simulation was implemented with
Bogacki-Shampine (ode3) solver and 100μsec sampling
time. Table 2 shows all parameter values for the proposed
four-bar linkage mechanism. For the sake of comparison,
the open-loop response of the crank angular velocity is
shown in Fig. 2 for a step input voltage of 12V (that
is applied to the mechanism driving motor). As shown
in Fig. 2, the speed fluctuates due to the system inertia
variations during rotation. The fluctuations are observed to
be between 87.5 and 135.5 rpm. Figure 3 shows the current
withdrawn by the DC motor under open-loop condition which
matches the variations in the system inertia during rotation.

In all introduced cases, a low-pass filter, that is tuned at(
0.01

100s+1

)
, is implemented on the controlled input voltage

to smoothen the chattering that could occur. Moreover, the
proposed controller gains are tuned to achieve a satisfactory
performance as listed in Table 3. For Case I, Figs. 4, 5,
6, and 7 show the crank speed response of the closed-
loop system, speed tracking error, control input voltage,
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Fig. 6 Control input voltage for Case I
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Fig. 7 Motor Current for Case I

and motor current, respectively. As shown in Figs. 4 and
5, the response is fast and smooth and speed tracking error
does not exceed 1.5 rpm (i.e., 1.5% of final value) at
steady state. The control input voltage and motor current
change accordingly to keep the crank speed track the desired
trajectory accordingly as shown in Figs. 6 and 7.

Figures 8, 9, 10, and 11 show the crank speed response
of the closed-loop system, speed tracking error, control
input voltage, and motor current, respectively, for Case
III. This case is introduced to investigate the response of
the controller in case the desired speed trajectory varies
with respect to time and set to a relatively high frequency
(i.e., 2 Hz). As shown in Fig. 8, the response is fast and
smooth. Although the desired speed trajectory varies with
time within ±5 rpm, the speed tracking error does not exceed
1.5 rpm (i.e., 1.5% of final value) at steady state as shown
in Fig. 9. For this speed trajectory, more effort is required
as shown in Fig. 10 when the control input voltage hits the
maximum at 24 V and chatters a lot afterward. The motor
current variations are relatively smooth and acceptable as
shown in Fig. 11.

To more challenge the proposed controller, a load torque
disturbance is introduced for cases II and IV as shown
in Fig. 12. Figures 13 and 14 show the crank speed
response of the closed-loop system and speed tracking error,
respectively, for Case II. As shown in Fig. 13, the speed
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Fig. 8 Crank speed response for Case III

0 0.5 1 1.5 2 2.5 3
-2

-1

0

1

2

3

4

Time [sec]

]
mpr[

rorr
E

gnikcarT
deep

S
knar

C

Fig. 9 Speed tracking error for Case III

tracking is very acceptable and satisfactory. The speed
tracking error does not exceed, in this case, 1.5 rpm (i.e.,
1.5% of final value) at steady state as shown in Fig. 14.
For this applied load torque disturbance, more effort is
required in comparison to Case I. More chattering can be
observed in the control input voltage and motor current as
shown in Figs. 15 and 16. When Case IV is simulated and
tested, the proposed controller is significantly challenged.
Nevertheless, the controller performs satisfactorily and
tracks the desired speed trajectory successfully with a
maximum tracking error of 2 rpm (i.e., 2% of final value) at
steady state as shown in Figs. 17 and 18. However, about 7.5
rpm overshoot is observed but occurs within the first 0.2 sec
of operation. The control input voltage and motor current
are shown in Figs. 19 and 20. As shown from the figures,
the response is acceptable in order to achieve a satisfactory
speed tracking under the introduced conditions.

It should be noted that in all cases, the motor rated
voltage is not allowed to exceed ±24V and that explains
why the speed regulation or tracking is not precise at
certain times as shown in Figs. 4, 8, 13, and 17. The
associated saturated applied motor voltages are shown in
Figs. 6, 10, 15, and 19. In order to present a quantitative
comparison between the four cases, two measures are
introduced and computed to quantify the performance of the
proposed controller under the conditions listed in Table 1:
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Fig. 10 Control input voltage for Case III
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Fig. 13 Crank speed response for Case II
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Fig. 14 Speed tracking error for Case II
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Fig. 15 Control input voltage for Case II
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Fig. 16 Motor current for Case II
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Fig. 17 Crack speed response for Case IV
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Fig. 18 Speed tracking error for Case IV
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Fig. 20 Motor current for Case IV

Table 4 Controller effort and speed tracking error measures along with
steady-state absolute error for cases I, II, III, and IV

Case Mu Me |e|

I 487.4 408 1.5

II 502.3 442.3 1.5

III 690.8 445.8 1.5

IV 700 512.6 2
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Fig. 21 Crack speed response for Case V
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Fig. 22 Speed tracking error for Case V

(1) Mu =
T∫

0
|Va (τ)|2 dτ , and (2) Me =

T∫

0
|e (τ )|2 dτ

where the measures Mu and Me are for the energy expanded
by the controller and for the speed tracking error over the
period of system operation (i.e., T = 3 sec), respectively.
The introduced quantities for cases I, II, III, and IV are
shown in Table 4 As shown from the table, speed tracking
error is better when tracking a constant speed in comparison
with a time-varying speed. In addition, controller effort is
less in Case I in comparison with Case III. Moreover, in
cases II and IV, more effort is required by the controller
in comparison with cases I and III where the load torque
disturbance is constant. In Table 4, and for the sake
of comprehensive comparison, the steady-state absolute
tracking error is recorded.

Finally, Case V is introduced to even more challenge the pro-
posed controller in comparison with cases II and IV. This case
is the most challenging case introduced to test the robustness
and validity of the proposed controller. In this case, time-
varying desired speed trajectory with time-varying load
torque disturbance and parametric uncertainties are intro-
duced. In fact, this case may not be logical in reality but
introduces a very solid case to test the system paramet-
ric uncertainties. Figures 21 and 22 show the crank speed
response of the closed-loop system and speed tracking error,
respectively, for Case V. As shown in Fig. 21, the speed
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Fig. 23 Control input voltage for Case V
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Fig. 24 Motor current for Case V

tracking is very acceptable and satisfactory at the times
where the motor voltage is not saturated (i.e., more effort
by the motor is not allowed to get the mechanism speed into
track). This is clear in Fig. 23. The motor current associ-
ated with the fluctuations of the motor voltage is shown in
Fig. 24. The steep behavior of the motor current is clear due
to the sudden demand of motor torque to correct the speed
track that is limited by the motor voltage saturation. Overall,
the proposed controller shows a satisfactory performance
under the presence of parametric uncertainties.

5 Concluding Remarks

In this paper, a robust backstepping controller is designed
and tested, in simulation, for a four-bar linkage mechanism
that is driven by a dc motor. An advanced controller
such as the proposed one has never been applied on
such mechanism that is considered to be an important
part of many applications in the academic and industrial
sectors. It has been a challenge to design a nonlinear
controller such as the proposed one to tackle the complex
behavior associated with the four-bar linkage mechanism
nonlinear dynamics. From the introduced simulation results
it is clear that the proposed robust backstepping nonlinear
controller is capable of regulating the speed and tracking a
desired speed trajectory of the four-bar linkage mechanism
satisfactorily, under different operating conditions, despite
of the significant dynamic fluctuations observed in the
open-loop system dynamics. It should also be noted that
the proposed robust controller was designed so that a priori
knowledge of the model parameters is not required. Finally,
the feasibility of using such nonlinear controller on the four-
bar linkage mechanism was proven. Experimental testing
will be considered as a future work.
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