Skip to main content
Log in

Cooperative Beam-Rider Guidance for Unmanned Aerial Vehicle Rendezvous

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The problem of aerial rendezvous of Unmanned Aerial Vehicles (UAVs) is considered. Beam rider approach, wherein the follower moves along a beam directed from a ground-based tracker onto the leader is proposed as a guidance strategy. Analytic guarantee for a resulting rendezvous between two same speed vehicles is derived from the line-of-sight guidance principles. Considering an approximate variation of the follower look-ahead angle, closed-form expressions are derived for time-to-rendezvous and follower lateral acceleration. Cooperative maneuvers are proposed for the leader minimizing the rendezvous engagement time. Guidance models are extended to 3D engagements and efficacy of the proposed method is demonstrated by extensive 2D and 3D simulations. Simulation results are presented complying with the analytic findings. Robustness of the proposed approach is verified against uncompensated autopilot delays, non-identical initial speeds, and wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. William, R.D., Bernard, B.K., Don, M.B., Daniel, F.K.: Micro air vehicles for optical surveillance. J Lincoln Lab 9(2), 197–214 (1996)

    Google Scholar 

  2. Rathinam, S., Almeida, P., Kim, Z., Jackson, S., Tinka, A., Grossman, W., Sengupta, R.: Autonomous searching and tracking of a river using an UAV. In: Proceedings of American Control Conference (ACC), New York, pp 359–364 (2007)

  3. Oh, H., Kim, S., Tsourdos, A., White, B.A.: Decentralised standoff tracking of moving targets using adaptive sliding mode control for UAVs. J. Intell. Robot. Syst. 76(1), 169–183 (2014)

    Article  Google Scholar 

  4. Sharma, R., Taylor, C.N.: Vision based distributed cooperative navigation for MAVs in GPS denied areas. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Chicago, AIAA 2009-1932 (2009)

  5. Manathara, Joel G., Sujit, P.B., Beard, R.W.: Multiple UAV coalitions for a search and prosecute mission. J. Intell. Robot. Syst. 62(1), 125–158 (2011)

    Article  MATH  Google Scholar 

  6. Cortes, J., Martinez, S., Bullo, F.: Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans. Autom. Control 51(8), 1289–1298 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Notarstefano, G., Bullo, F.: Distributed consensus on enclosing shapes and minimum time rendezvous. In: Proceedings of 45th IEEE Conference on Decision and Control (CDC), San Diego, pp 4295–4300 (2006)

  8. Hui, Q.: Finite-time rendezvous algorithms for mobile autonomous agents. IEEE Trans. Autom. Control 56 (1), 207–211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. part 2: the asynchronous case. SIAM J. Control Optim. 46(6), 2120–2147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dimarogonas, D.V., Kyriakopoulos, K.J: On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control. 52(5), 916–922 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sun, Y.G., Wang, L.: Consensus problems in networks of agents with double-integrator dynamics and time-varying delays. Int. J. Control 82(10), 1937–1945 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhu, W., Jiang, Z.P., Feng, G.: Event-based consensus of multi-agent systems with general linear models. Automatica 50, 552–558 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, Z., Shima, T., Schumacher, C.J.: Optimal scheduling for refueling multiple autonomous aerial vehicles. IEEE Trans. Robot. 22(4), 682–693 (2006)

    Article  Google Scholar 

  14. Oh, H., Kim, S., Shin, H.S., White, B.A., Tsourdos, A., Rabbath, C.A.: Rendezvous and standoff target tracking guidance using differential geometry. J. Intell. Robot. Syst. 69(1–4), 389–405 (2013)

    Article  Google Scholar 

  15. Cao, J., Zeng, Z., Yao, B., Lian, L.: Toward optimal rendezvous of multiple underwater gliders: 3D path planning with combined sawtooth and spiral motion. J. Intell. Robot. Syst. 85(1), 189–206 (2017)

    Article  Google Scholar 

  16. Manathara, J.G., Ghose, D.: Rendezvous of multiple UAVs with collision avoidance using consensus. J. Aero. Eng. 25(4), 480–489 (2012)

    Article  Google Scholar 

  17. Ratnoo, A., Ghose, D.: Impact angle constrained interception of nonstationary nonmaneuvering targets. J. Guid. Control. Dyn. 33(1), 269–275 (2010)

    Article  Google Scholar 

  18. Erer, K.S., Merttopcuoglu, O.: Indirect impact-angle-control against stationary targets using biased pure proportional navigation. J. Guid. Control. Dyn. 35(2), 700–703 (2012)

    Article  Google Scholar 

  19. Smith, A.L.: Proportional navigation with adaptive terminal guidance for aircraft rendezvous. J. Guid. Control. Dyn. 31(6), 1832–1835 (2008)

    Article  Google Scholar 

  20. Yamasaki, T., Balakrishnan, S.N.: Sliding mode-based pure pursuit guidance for unmanned aerial vehicle rendezvous and chase with a cooperative aircraft. Proc. Inst. Mech. Eng. Part G- J. Aero. Eng. 224(10), 1057–1066 (2010)

    Article  Google Scholar 

  21. Campa, G., Napolitano, M.R., Fravolini, M.L.: Simulation environment for machine vision based aerial refueling for UAVs. IEEE Trans. Aerosp. Electron. Syst. 45(1), 138–151 (2009)

    Article  Google Scholar 

  22. Ratnoo, A.: Variable deviated pursuit for rendezvous guidance. J. Guid. Control. Dyn. 38(4), 787–792 (2015)

    Article  Google Scholar 

  23. Shneydor, N.A.: Line-of-sight guidance. In: Missile Guidance and Pursuit, pp 36–38. Horwood Publ., Chichster (1998)

  24. Ha, I.J., Chong, S.: Design of a CLOS guidance law via feedback linearization. IEEE Trans. Aerosp. Electron. Syst. 28(1), 51–63 (1992)

    Article  Google Scholar 

  25. Ratnoo, A., Shima, T.: Line of sight interceptor guidance for defending an aircraft. J. Guid. Control. Dyn. 34(2), 522–532 (2011)

    Article  Google Scholar 

  26. Yamasaki, T., Balakrishnan, S.N.: Modified command to line-of-sight intercept guidance for aircraft defense. J. Guid. Control. Dyn. 36(3), 898–902 (2013)

    Article  Google Scholar 

  27. Ratnoo, A.: Three-point guidance for intercepting weaving targets. J. Guid. Control. Dyn. 39(8), 1879–1884 (2016)

    Article  Google Scholar 

  28. Anjaly, P., Ratnoo, A.: A beam rider concept for three point aerial rendezvous guidance. In: AIAA Guidance, Navigation and Control Conference and Exhibit, San Diego, AIAA 2016–2108 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjaly Parayil.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parayil, A., Ratnoo, A. Cooperative Beam-Rider Guidance for Unmanned Aerial Vehicle Rendezvous. J Intell Robot Syst 95, 585–599 (2019). https://doi.org/10.1007/s10846-018-0873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0873-x

Keywords

Navigation