

Traditionally, the landing maneuver on a moving
platform has been approached by means of a wide variety
of techniques, which are able to solve the problem in an
analytic manner and to perform properly in some specific
conditions. Most of these strategies are mainly based on
perception and relative pose estimation [5, 6, 42], as well as
trajectory optimization and control [1, 15, 20, 29, 46].

Nevertheless, classical techniques have their limitations,
in terms of model design, non-linearities approximation,
disturbances rejection and efficiency of computation. In
this context, machine learning techniques have proven to
increasingly overcome most of these limitations, having
generated high expectations in the research community
since 1971, when Ivakhnenko [19] trained a 8-layer
neural network using the Group Method of Data Handling
(GMDH) algorithm. Nowadays, machine learning has
evolved to more complex techniques, such as deep learning
strategies which are capable of generalizing from large
datasets of raw data information. Deep learning has opened
up important research and application fields in the context
of unsupervised feature extraction, where Convolutional
Neural Networks (CNNs) were able to provide outstanding
results in comparison to traditional computer vision
techniques [26].

In the context of machine learning (and reinforcement
learning) for continuous control, there are uprising problems
to cope with, such as divergence of learning, temporal
correlation of data, data efficiency or continuous nature
of inputs and outputs. These issues have been limiting
machine learning and reinforcement learning strategies
for continuous control over the last years. However,
recent advances in the reinforcement learning field, such
as DeepMind Technologies Deep Q-Network (DQN)
[31], have unveiled a new set of possibilities to solve
complex human-level problems by means of novel deep
reinforcement learning strategies. The key advances of
DQN were the inclusion of an experience replay buffer (to
overcome data correlation), and a different approach for the
target Q-Network, whose weights change with the update
of the main Q-Network in order to break the correlation
between both networks (in contrast with the targets used
for traditional supervised learning, which are fixed before
learning begins) [31]. The state of the DQN algorithm is
the raw image and it has been widely tested with Atari
games. DQN established the base for a novel line of deep
reinforcement learning solutions, but it was not designed
for continuous states, which are deeply related to robotic
control problems.

Based on the key improvements of DQN and the actor-
critic paradigm established by Richard S. Sutton and
Andrew G. Barto in their renowned reinforcement learning
book [43], Lillicrap et al. proposed Deep Deterministic
Policy Gradients (DDPG) [28] as an algorithm to solve

continuous control problems by integrating neural networks
in the reinforcement learning paradigm. DDPG is able to
perform remarkably well with low dimensional continuous
states and actions, but is also capable of learning from raw
pixels [28].

In this work, the novel deep reinforcement learning
algorithm (DDPG) has been utilised to solve a complex
high level task, such as UAV autonomous landing on a
moving platform. This task has been solved in simulation
and real flights by means of a Gazebo-based reinforcement
learning framework. The training phase has been carried out
in Gazebo2 [48] and RotorS simulator [13], which provide
realistic simulations that are helpful for a quick transition to
real flight scenarios. The testing phase has been performed
in both simulated and real flights.

1.1 RelatedWork

The problem of UAV autonomous landing on both static
and moving platforms is of utmost importance for real
world applications [9, 33]. Given the complexity of the
challenge, a number of previous works focus mostly on
specific solutions for components such as perception and
relative pose estimation [5, 6, 42] or trajectory optimization
and control [1, 15, 20, 29, 46]. Other research lines
explore coupled methods mostly related to Image-Based
Visual Servoing (IBVS) [27] and, in this direction, novel
advanced algorithms which also incorporate constant force
disturbance estimation have been proposed [39].

Regarding the control maneuvers when the relative state
of the vehicles is assumed to be known, popular techniques
include different kinds of guidance and rendezvous laws
[15, 20] which sometimes are augmented with velocity con-
trollers for a faster approaching phase [3]. When a desired
meeting point is obtained, incorporating feedforward inputs
allows for a faster response against track following errors
[29] and the determination of optimal rendezvous trajecto-
ries can also take wind disturbances into account [1]. PID
controllers are the preferred option for aggressive landing
from relatively short distances [3, 5, 47], while an adaptive
control schema presents enhanced robustness [18, 24]. A
discrete-time non-linear model predictive controller which
optimizes both the trajectories and the landing time was
developed to address the difficult problem of landing on top
of moving inclined platforms [46].

Even if only tested on static platform landing tasks, inno-
vative bio-inspired strategies have proven to perform well in
the real world, employing a time-to-contact (TTC) indicator
[22]. Intelligent control and machine learning based meth-
ods are very promising too, since they provide the ability

2http://gazebosim.org

to deal with different system dynamics in different environ-
ments and landing circumstances [4]. Recent contributions
have proposed neural network backpropagation controllers
[4] for landing on top of a static platform and classical
discrete reinforcement learning approaches have also been
used in the literature, such as the approach proposed by
Shaker et al. [40], where an LSPI algorithm was used to
land on top of a static platform. Both state and actions were
part of a discrete space and the main sensor to estimate the
state was a camera. The UAV was able to perform a landing
maneuver on a static platform in a simulated environment.

The previously mentioned novel reinforcement learn-
ing methodologies are strongly related to deep learning
strategies, since their theory is intrinsically linked. Concern-
ing deep learning for UAV indoor navigation tasks, recent
advances have driven to a successful application of CNNs
in order to map images to high-level behaviour directives
(e.g. turn left, turn right, rotate left, rotate right) [23, 35]. In
[35], the Q function is estimated through a CNN, which is
trained in simulation and successfully tested in real exper-
iments. In [23], discrete actions are directly mapped from
raw images. In all stated methods, the learned model is run
offboard, usually taking advantage of a GPU in an external
laptop.

In [16], a Deep Neural Network (DNN) model was
trained to map image to action probabilities (turn left,
go straight or turn right) with a final softmax layer, and
tested onboard by means of an Odroid-U3 processor. The
performance is later compared to two automated methods
(SVM and a method in [38]) and two human observers.

On the other hand, deep learning for low-level motion
control is challenging, since dealing with continuous and
multi-variable action spaces can become an intractable
problem. Nevertheless, some recent advances have pro-
posed novel methods to learn low-level control policies
from imperfect sensor data in simulation [21, 49]. In [49],
a Model Predictive Controller (MPC) was used to generate
data at training time in order to train a DNN policy, which
was allowed to access only raw observations from the UAV
onboard sensors. In testing time, the UAV was able to follow
an obstacle-free trajectory even in unknown situations. In
[21], the well-known Inception v3 model (pre-trained CNN)
was adapted in order to enable the final layer to provide six
action nodes (three transitions and three orientations). After
re-training, the UAV managed to cross a room filled with a
few obstacles in random locations.

On the side of deep reinforcement learning, some recent
algorithms are able to perform slightly better than DDPG, in
terms of training time and for low-dimensional continuous
tasks. In [17], Normalized Advantage Functions (NAF)
or continuous deep Q-learning algorithm is able to solve
continuous problems in simulation, by the use of a neural
network that separately outputs a value function V (x) and

an advantage term A(x, u) [17]. This representation allows
to simplify more standard actor-critic style algorithms,
while preserving the benefits of non-linear value function
approximation [17]. In [30], several agents (from 1 to
16) are run in parallel threads, enabling the possibility of
stable training of neural networks with both value-based
and policy-based methods, off-policy as well as on-policy
methods, and in discrete as well as continuous domains.
Also, Asynchronous Advantage Actor-Critic (A3C) shows
that stable online Q-learning is possible without experience
replay [30]. Both [17] and [30] have been tested in simulated
environments, such as MuJoCo [44] and/or TORCs [11].

Finally, concerning the framework for training and
testing novel deep reinforcement learning algorithms for
robotics, recent developments point to extend the OpenAI
Gym3 reinforcement learning training/test bench to a
widely-used robotics simulator, such as Gazebo simulator.
In [48], a complete open source test bench is released,
with simulation frequency up to real time and meant for an
specific model of UAV and UGV.

1.2 Contributions

Our proposed method differs from previous work in
the following aspects: (i) A Gazebo-based reinforcement
learning framework has been established. This framework is
versatile-enough to be adapted to other types of algorithms,
environments and robots. (ii) A novel deep reinforcement
learning algorithm (DDPG) has been adapted and integrated
into our Gazebo-based simulation framework. (iii) The
landing maneuver on a moving platform has been solved
by means of DDPG algorithm, in both simulated and real
flights.

Please note that we address the full problem, with
continuous state and actions spaces. Also, as an indirect
result, we have demonstrated the feasibility of a powerful
work flow, where robots can be trained in simulation and
tested in real operation environments. To the best of the
authors knowledge, this is the first work that addresses
the UAV landing maneuver on top of a moving platform
by means of a state-of-art deep reinforcement learning
algorithm, trained in simulation and tested in real flights.

The remainder of the paper is organized as follows:
Section 2 presents a brief introduction on the reinforcement
learning theory and a short explanation on the basics of
DDPG algorithm. Section 3 details the presentation and
description of our Gazebo-based reinforcement learning
framework and the design of the experiment which meets all
the constraints required in the deep reinforcement learning
paradigm for autonomous UAV landing on a moving

3Open test bench for reinforcement learning algorithms: https://gym.
openai.com

platform. Section 4 presents the simulated and real-flight
experiment results. Finally, Section 5 provides conclusions
and future work optimizations and research lines.

2 Background

In reinforcement learning, an agent is defined to interact
with an environment, seeking to find the best action for
each state at any time step. The agent must balance
exploration and exploitation of the state space in order to
find the optimal policy which maximizes the accumulated
reward from the interaction with the environment. In this
context, an agent modifies its behaviour or policy with
the awareness of the states, actions taken and rewards for
every time step. Indeed, reinforcement learning involves
an optimization process throughout the whole state space,
in order to maximize the accumulated reward. Robotic
problems are often task-based with temporal structure.
These type of problems are suitable to be solved by means
of a reinforcement learning framework [25].

The standard reinforcement learning theory states that an
agent is able to obtain a policy, which maps every state s ∈ S

to an action a ∈ A, where S is the state space (possible states
of the agent in the environment) and A is the finite action
space. The inner dynamics of the agent are represented
by the transition probability model p(st+1|st , at) at time
t . The policy can be stochastic π(a|s), with a probability
associated to each possible action, or deterministic π(s). In
each time step, the policy determines the action to be chosen
and the reward r(st , at) is observed from the environment.
The goal of the agent is to maximize the accumulated
discounted reward Rt = ∑T

i=t γ i−t r(si , ai) from a state at
time t to time T (T = ∞ for infinite horizon problems)
[43]. The discount factor γ is defined to allocate different
weights for the future rewards.

For a specific policy π , the value function V π in Eq. 1
is a representation of the expectation of the accumulated
discounted reward Rt for each state s ∈ S (assuming a
deterministic policy π(st)).

V π(st) = E[Rt |st , at = π(st)] (1)

An equivalent of the value function is represented by the
action-value function Qπ in Eq. 2 for every action-state pair
(st , at).

Qπ(st , at) = r(st , at) + γ
∑

st+1

p(st+1|st , at)V
π(st+1) (2)

The optimal policy π∗ shall be the one which maxi-
mizes the value function (or equivalently the action-value
function), as in Eq. 3.

π∗ = arg max
π

V π(st) = arg max
at

Q∗(st , at) (3)

A general problem in real robotic applications is that
the state and action spaces are often continuous spaces.
A continuous state and/or action space can make the
optimization problem intractable, due to the overwhelming
set of different states and/or actions. Reinforcement learning
methods, as a general framework for representation, are
enhanced through deep learning to aid the design for feature
representation, which is known as deep reinforcement
learning.

In the context of state-of-the-art deep reinforcement
learning algorithms, DDPG represents one successful
application of neural networks to the reinforcement learning
paradigm, and it is able to solve continuous control
problems. As previously stated, DDPG [28] is a policy-
based deep reinforcement learning algorithm designed
to work with both continuous state and actions spaces.
Policy-based reinforcement learning methods aim towards
directly searching the optimal policy π∗, which provides
a feasible framework for continuous control. If the target
policy π∗ is a deterministic policy μ, the Q function (see
Eq. 4) can be learned off-policy, using transitions (from
an environment E) which are generated from a different
stochastic behaviour policy β [28].

Q(st , at) = Ert ,st+1∼E[r(st , at)+γQμ(st+1, μ(st+1))] (4)

A function approximator, parametrized by θQ, is
considered in DDPG to approximate the Q function. It is
optimized by minimizing the loss L(θQ) of Eq. 5.

L(θQ) = Est∼ρβ,at∼β,rt∼E[(Q(st , at |θQ) − yt)
2] (5)

where

yt = r(st , at) + γQ(st+1, μ(st+1)|θQ) (6)

The key changes for this large non-linear approximators
to converge (in discrete spaces) were: the use of a replay
buffer, and a separate target network for calculating yt , as
firstly proven by DQN [31]. In order to deal with large
continuous state and action spaces, DDPG adapted the
actor-critic paradigm introduced in [41], with two neural
networks to approximate a greedy deterministic policy
(actor) and the Q function (critic). DDPG method learns
with an average factor of 20 times fewer experiences steps
than DQN [28].

The actor network is updated by following and applying
the chain rule to the expected return from the start
distribution J with respect to the actor parameters (see
Eq. 7).

∇θμJ ≈ Est∼ρβ [∇θμQ(s, a|θQ)|s=st ,a=μ(st |θμ)] (7)

An advantage of the off-policy methods is that explo-
ration can be treated independently from learning. In this
case, exploration is carried out throughout autocorrelated
Ornstein-Uhlenbeck exploration noise [45].

operation. It has been used to enable the operation of the
UAVs in both training and testing time, though its full
explanation is out of the scope of this work. For further
information, please refer to [37].

In this framework, the environment interface shown in
Fig. 1 implements an interface between Gazebo/Aerostack
and the agent, being in charge of parsing all the incoming
data, in order to adapt it to an intelligible structure which
the agent can use. Furthermore, taking into consideration
future extensions of either agents, environments, robots or
simulation systems, the framework has been designed in
a versatile manner at a programming level. Since all the
communication interfaces are standard and cross-language,
both the agent and the environment interface can be
implemented in a wide variety of programming languages,
such as C++, Python, or Java.

Finally, our framework is designed to be used with
Gazebo, but it can be adapted to any other simulation
systems (as well as simulated robots), due to the standard
nature of its communications. Also, the simulation time can
be speeded up or slowed down, in order to reduce training
times and to adapt the simulation to computationally-
expensive experiments, respectively.

3.2 Reinforcement Learning Based Formulation

In the context of reinforcement learning, the formulation
of the experiment can be decisive for the algorithm to
converge, since there are an increasing number of possible
designs which ideally would lead to the same result. In
practice, the formulation of the state and action spaces, as
well as the design of the reward function, determines the
speed of convergence and even the possibility of divergence
of the reinforcement learning algorithm. We have designed
the state, action and reward function in a way that it
minimizes information passed to the agent, speeds up
learning and avoids learning divergence.

As previously stated, a reinforcement learning experi-
ment is defined by the state space s ∈ S, the action space

a ∈ A and the reward function r . In our proposed approach,
the state space S is defined by Eq. 8.

S = {px, py, pz, vx, vy, C} (8)

Where px , py and pz are the positions of the UAV with
respect to the Moving Platform (MP) in x, y and z axes
respectively at time t , vx and vy are the velocities of the
UAV with respect to the MP in x and y axes respectively
at time t and C is the binary state of a pressure sensor
located on the top of the horizontal surface of the MP. All the
sensory information is retrieved from Gazebo simulator and
parsed by the environment interface component, as shown in
Fig. 2. Regarding the action space A, it is defined by Eq. 9.

A = {ax, ay} (9)

Where ax and ay are the reference velocities, input to
the velocity controller (see Fig. 2), in x and y axes at
time t . In this paper, the velocity reference in the z axis
has not been included in the action space. This is due
to the fact that we are tackling a complex problem with
continuous state and action spaces and the full behaviour
is completely self-learned in simulation, by means of a
deep reinforcement learning algorithm not previously tested
on this type of robotic tasks. Hence, the inclusion of z
axis has been left as future work since it involves a much
higher order of complexity out of the scope of this study.
Instead, a constant velocity reference is commanded in the
z axis in each time step. This fact simplifies the action
space, increasing the speed of convergence of the algorithm
without losing generality of the approach. The resulting
state and action spaces are a continuous 6-dimensional
space and a continuous 2-dimensional space respectively,
with normalized variables ranging from + 1 to − 1 values.

The reward function is one of the most important
components in the reinforcement learning framework. A
proper design of the reward function can lead to a faster
convergence of the algorithm and a better performance at
testing time. In our proposed approach, where the agent is
meant to generate continuous control actions, the reward

Agent
Env

Interface

Velocity
Controller

Gazebo + RotorS

x y z

x_uav y_uav z_uav x_mp y_mp z_mp

x_uav y_uav z_uav x_mp y_mp z_mp
x y z

x y z

x y x_ref y_ref

Fig. 2 Architecture of our proposed reinforcement learning framework for the case of the experiment of study

function shall be designed in such a way that it rewards
smooth actions with respect to time. The resulting reward
function r is defined by Eqs. 10 and 11.

shapingt = −100
√

p2
x + p2

y − 10
√

v2
x + v2

y −
√

ax
2 + ay

2

+ 10C(1 − |ax |) + 10C(1 − |ay |) (10)

r = shapingt − shapingt−1 (11)

As can be inferred from Eq. 10, the shaping function
explicitly differentiates between the importance of minimiz-
ing the position with respect to the MP, the velocity with
respect to the MP and the generated actions (each variable is
weighted by a different coefficient). Following this fashion,
the agent is able to coarsely learn to minimize its posi-
tion with respect to the MP and to subsequently optimize
its behaviour in order to generate smoother velocity refer-
ences, which leads to a less aggressive movement. Also, the
C coefficient rewards the agent as soon as the UAV lands
on the MP and the velocity references are decreased to their
absolute minimum.

In addition, shaping is a popular method for speeding
up reinforcement learning in general, and goal-directed
exploration in particular [10]. It increases the speed of
convergence of a reinforcement learning algorithm by
transferring knowledge about the current progress on the
task to be solved, in this case, with respect to the previous
state of the agent. Nevertheless, it requires significant
design effort, and results in less autonomous agents. Also,
it may alter the optimal solution, leading to unexpected
final behaviour. In this work, a shaping method is applied
in an non-invasive trend, by informing the agent about
its instantaneous progress and avoiding instability and
algorithm divergence.

Also, it is assumed that both the position and velocity of
the UAV and the MP are available at training time (ground
truth data). Nevertheless, as stated in this section, the agent
is only aware of its position and velocity with respect to
the MP, enabling this approach to work also in the absence
of absolute positioning systems, such as Global Navigation
Satellite Systems (GNSS). It has to be noted that even if the
agent has been trained with ground truth data, it is capable
of performing the landing maneuver with noisy simulated
and real data, as shown in Section 4.2.

The training procedure is based on an adapted implemen-
tation of stated DDPG algorithm included in our framework.
In our case, the actor and critic neural networks (and their
corresponding target networks) are feed-forward neural net-
works with two hidden layers of 200 and 100 units each.
The activation function of each unit of a hidden layer is a
Recified Linear Unit (ReLU). The input and output layer
dimensions of the actor network are based on the state
and action dimensions (6 and 2 units), respectively (see

4 Experiments and Results

This section aims to provide a full explanation about the
experiments designed and implemented to validate the
whole training and testing pipeline. A detailed description
of the training experiments in simulation, as well as the
testing experiments in both simulation and real flights, is
included. Results are shown and discussed, as well the
hardware and software specifications which have been used
to carry out the described experiments. A complete video
of the whole set of training and testing experiments can be
found in https://vimeo.com/235350807.

4.1 Experimental Setup

In this section, the proposed experimental setup for
simulated and real flights is described. The agent has been
implemented in Python 2.7, due to the availability of the
most common machine learning libraries. In this work, the
Tensorflow library [2] has been used as the main basis of
the algorithm and it can run on both Central Processing
Unit (CPU) and Graphical Processing Unit (GPU). The
GPU involved in the training phase was a Nvidia GeForce
GTX970 and in the testing phase was a Nvidia GeForce
GTX950M. In the case of the environment interface, it has
been implemented in C++ (under the standard C++11),
in order to take advantage of the benefits of our Aerostack
architecture [37]. ROS Kinetic has been used as the
communication framework. The operating system utilised
for running the processes involved in both simulated and
real flights is Ubuntu 16.04 LTS.

4.1.1 Simulated Training and Testing Phases

A simulated environment has been created in Gazebo 7
for both simulated training and testing phases. A UAV
model and a minimalistic model of a MP (see Fig. 3a) have
been included in an adapted version of RotorS simulator
[13]. RotorS simulator emulates the autopilot and all
the required sensors for a UAV to perform autonomous
maneuvers, such as Inertial Measurement Unit (IMU), lidar
and/or cameras (RGB or RGB-D). We have selected an
AsTec Hummingbird as the UAV to perform the landing
maneuver in simulation. A simulated pressure sensor has
been included on the surface of the MP, in order to inform
the agent about whether the UAV has properly landed or not.

Eqs. 8 and 9). The activation function of the output layer is
a tanh function, bounded to the range of [− 1, 1]. The out-
put layer of the critic network has one unit with a linear
activation function in order to provide an estimation of the
Q-function.

Fig. 3 Simulation and real
environment scenarios

(a) UAV and MP in the training and testing

simulation environment.

(b) UAV and MP in the testing real

 environment.

The environment interface, which is in charge of parsing
all the incoming data, receives position and velocity ground
truth data from the Gazebo simulator and sends the
velocity references to the Aerostack velocity controller
via ROS topics. The state and reward is sent back to
the agent via ROS services. The whole simulated training
and testing phases have been carried out in a real-time
Gazebo simulation, with an agent frequency of 20 Hz, an
asynchronous environment interface, a velocity controller
frequency of 30 Hz and Gazebo ground truth frequency of
100 Hz. The main differences between simulated training
and testing phases are:

1. Simulated training phase The trajectory of the MP
is linear and periodic with a maximum velocity of
1 m/s. The measured position and velocity of both the
UAV and the MP are ground truth data with no noise.
The permitted horizontal area for the UAV to fly is a
rectangle of 3 m × 6 m (it has been empirically set
to provide the minimum feasible area which allows to
learn the landing maneuver).

2. Simulated testing phase The trajectory of the MP can be
linear and periodic with a maximum velocity of 1 m/s or
non-linear and non-periodic with a maximum velocity
of 1 m/s. The measured position and velocity of both the
UAV and the MP are ground truth data with Gaussian
noise (μ = 0 and σ = 1) in every variable of the agent
state. The permitted horizontal area for the UAV to fly
is a rectangle of 5 m × 9 m.

4.1.2 Real-Flight Testing Phase

A replica of the simulated environment has been created for
the real-flight testing phase. The MP, which was designed
and built for previous works on autonomous landing [34,
36], is able to move in linear periodic trajectories (with
rails) and in arbitrary trajectories. The selected UAV
platform was a Parrot Bebop4 due to its small size, robust

4http://global.parrot.com/mx/productos/bebop-drone/

control and higher flight velocity (see Fig. 3b). This UAV
platform is provided with an on-board autopilot which can
be commanded throughout a wireless WiFi channel. The
remaining processes, such as the agent, the environment
interface and the Aerostack components are run off-board.
Tensorflow library calls are computed on a laptop GPU
(Nvidia GTX950M). The rest of the required routines
are computed on the CPU. The UAV and MP position
and velocity information is provided by an OptiTrack
Motion Capture system (MoCap) which covers an area of
approximately 4 m × 6 m. The frequency of the agent is 20
Hz, the environment interface is asynchronous, the velocity
controller runs at 30 Hz and the motion capture system
frequency is 100 Hz. The communication with the UAV is
carried out trough WiFi at 2.4 GHz.

4.2 Results and Discussion

In this work, the full landing maneuver has been trained in
simulation throughout 4500 episodes (approximately 720k
training steps over 10 h). In this setup, an episode consists
of a full landing trial on top of the MP and it is composed
of a maximum of 900 training steps. As previously stated,
the agent interacts with the environment every 0.05 s (at
a frequency of 20 Hz), which corresponds to one training
step. In each training step both actor and critic network
weights are being optimized by means of Adam optimizer
and with a base learning rate of 10−4 and 10−3, respectively.
The selected minibatch size has been 64. In every episode,
the UAV and the MP are initialized at a random position
of the horizontal plane (x and y axes). The experiment
finishes when the UAV touches the ground or the number of
training steps exceeds the maximum per episode. Following
this trend, the experiment is repeated in a wide variety
of conditions to provide a complete range of experiences
which the agent can learn from in order to maximize its
accumulated reward over time.

In Fig. 4, the moving average and standard deviation
of the accumulated reward for the full simulated training
and testing phase are depicted. In the training phase, an

(a) Partial state and actions signals of episode 500 (test). (Top) Position of the UAV with

respect to the MP, in x and y axes. The final position of the UAV with respect to the MP

is 0.44 m and 0.42 m, in x and y axes respectively. (Middle) Velocity of the UAV with

respect to the MP, in x and y axe. (Bottom) Velocity reference commands (actions)

generated by the agent, in world coordinates and in x and y axes.

(b) Partial state and actions signals of episode 4500 (test). (Top) Position of the UAV with

respect to the MP, in x and y axes. The final position of the UAV with respect to the MP

is 0.14 m and -0.37 m, in x and y axes respectively. (Middle) Velocity of the UAV with

respect to the MP, in x and y axes. (Bottom) Velocity reference commands (actions)

generated by the agent, in world coordinates and in x and y axes.

Fig. 5 Partial state and actions signals of two test episodes (simulated testing phase)

infer the performance in the x and y axes (parallel to the
ground plane), since the performance in the z axis remained
constant in these experiments (refer to Section 3.2). Also,
the actions provided by the agent (ax, ay) are determinant
to validate the performance for a real application. As shown
in Fig. 5a, the actions generated by the agent in the episode
500 are not optimum, since it keeps on generating velocity
reference commands even when landed. Nevertheless, as
suggested by Fig. 4a, after episode 400, the behaviour of the
agent is close to the optimum, being able to perform a full
landing maneuver in most of the testing episodes, but with
oscillating control actions when touching the MP.

In Fig. 5b, both position and velocity with respect to
the MP converge to approximately zero (exact zero is
not practically possible either in the context of a realistic
simulation or in a real flight), and in a continuous and
smooth trend, which is the desired behaviour. Furthermore,
the velocity reference commands generated by the agent
converge approximately to zero as well. Figure 5b
represents the optimum performance of the agent in the
absence of noise for the setup presented in this work. Note
that due to the lack of friction of the simulated MP, the UAV
is able to land on approximately the center of the MP, but
it slightly slides from this position over time and the agent
has learned to compensate this effect (see supplementary
video provided in the beginning of Section 4). Nevertheless,
the UAV is still on top of the MP, which is considered a
successful landing.

Table 1 Mean and standard deviation metrics over 150 landing trials
in two different simulated scenarios (for our selected actor network of
episode 4500)

Scenario tland (s) x (m) SR (%)

y (m)

Slow 13.5 ± 1.56 −0.01 ± 0.38 90.6

0.06 ± 0.47

Fast 17.76 ± 1.52 0.04 ± 0.42 73.3

−0.11 ± 0.49

On the other hand, in order to test the capability of
generalization and robustness of the DDPG algorithm in
simulation, a test experiment with added noise has been
performed. In this experiment, a Gaussian random variable
(μ = 0 and σ = 1) has been added to every component of
the agent state, resulting in the plots of Fig. 6. As shown,
both the position and velocity of the UAV with respect to the
MP are signals with a high level of gaussian noise, but the
agent is still able to perform a proper landing maneuver (the
position of the UAV with respect to the MP still converges
to the origin). The velocity reference commands generated
by the agent are notably noisy, which can be problematic in
some other velocity control strategies (it may lead to over
oscillation). However, in the context of a linear velocity
controller, the final behaviour is more erratic but does not
become unstable.

Fig. 6 Partial state and actions signals of episode 4500 (simulated test-
ing phase). (Top) Position of the UAV with respect to the MP with
Gaussian noise, in x and y axes. The final position of the UAV with
respect to the MP is 0.15 m and 0.42 m, in x and y axes respectively.

(Middle) Velocity of the UAV with respect to the MP with Gaus-
sian noise, in x and y axes. (Bottom) Velocity reference commands
(actions) generated by the agent, in world coordinates and in x and y
axes

Additionally, in order to further validate our selected
network from episode 4500, an extensive evaluation in
two different scenarios has been performed over 150 test
episodes (see Table 1). Both the UAV and the MP start at a
random position in each episode (see testing phase area of
Section 4.1). Two scenarios have been designed and several
metrics have been provided. Slow scenario corresponds
to a rectilinear periodic trajectory of the MP with a
maximum velocity of 0.4 m/s. Fast scenario corresponds to
a rectilinear periodic trajectory of the MP with a maximum
velocity of 1.2 m/s. tland represents the required time to
perform the full landing maneuver (until the UAV touches
the MP); x and y represent the final position of the UAV
with respect to the center of the MP in x and y axes,
respectively; and the Success Rate (SR) represents the
percentage of successful landing trials with respect to the
whole set (over 150 episodes). A landing trial is considered
successful whether the UAV touches the surface of the
moving platform within an area of 1.0 m × 1.0 m (platform
of size 1.2 m × 1.2 m). A failure in the landing maneuver
is mostly due to the fact that velocity in z axis is constant
and the target MP can become out of range, from where the
agent is not able to recover the MP position. Nevertheless,
the SR suggests that this approach has succeeded in learning
the landing maneuver. Also, both the tland and the final
position of the UAV with respect to the MP shows a proper
performance.

The robustness of DDPG algorithm can be further val-
idated in real flights, due to the difference in sensors and
dynamics of the UAV used. It has to be noted that no addi-
tional tuning of the actions provided by the actor network
was required when moving from simulation to real flights.
Furthermore, as previously stated, the AscTec Humming-
bird included in simulation training and testing phases, and
the Parrot Bebop used in real-flight testing have a simi-
lar size but the simulated dynamics differ from the real
ones. The dynamics of the AscTec Hummingbird were not
required to be adjusted in simulation to fit Parrot Bebop
dynamics. The explanation of this fact is twofold. First,
our approach aims to prove a powerful workflow, where a
robot can be trained in simulation and tested in real flights,
even when the robot is not being precisely simulated (e.g.
different dynamics or autopilot). In this context, the gen-
eralization capability of the DDPG algorithm was enough
to overcome stated differences. Second, our approach per-
forms high level control (velocity reference control), so
that differences in dynamics can be partially absorbed by a
proper tuning of the velocity and autopilot controllers.

In Fig. 7, two real-flight plots are shown. In these real-
flight experiments, the UAV is automatically commanded to
land when the altitude with respect to the MP is lower than
a certain threshold th (th = 35 cm), in order to avoid unsafe
maneuvers that do not add value to the final performance.

Also, the UAV is commanded at constant velocity in z
axis. However, due to the Parrot Bebop autopilot design
it can sometimes have sudden altitude changes due to
missestimation of the UAV altitude in a certain instant (see
supplementary video). Figure 7a, shows the performance of
the UAV when the MP follows a linear periodic trajectory.
This experiment seeks to replicate the scenario which has
been used to train the agent in simulation, in order to prove
that it is possible to describe a similar behaviour in a real
flight. As seen in Fig. 7a, the position of the UAV with
respect to the MP converges to the origin and the velocity
reference commands generated by the agent are stable with
respect to time. Furthermore, in order to test the capability
of generalization of the DDPG algorithm, a more complex
experiment has been designed. In this new experiment, the
MP describes a random trajectory in both x and y axes of
the horizontal space (ground plane). This scenario has never
been experienced by the agent, so that the approach can
be proven to be robust and generic enough to overcome
the uprising differences, as shown in Fig. 7b. The results
shown in Fig. 7b depict a similar convergence, compared
to previous results, leading to a proper landing of the UAV
on the MP and with a stable generation of actions. The
final high level performance of the UAV remains stable,
smooth and robust against new experiences. Regarding
these results, we can conclude that DDPG algorithm is
capable of learning a complex and continuous landing
maneuver task. In addition, it is feasible for a UAV to be
trained in simulation and tested in the real world without
further parameter tuning in a diverse range of conditions.

5 Conclusions and FutureWork

In this paper, the problem of autonomous landing of a
UAV on a moving platform has been solved by means
of a deep reinforcement learning algorithm. The state-of-
the-art DDPG algorithm was integrated and adapted into
our novel Gazebo-based reinforcement learning simulation
framework, enabling the possibility of training complex
continuous tasks in a realistic simulation. The UAV landing
maneuver task was trained in simulation, and tested in
simulation and real flights. This fact has validated a
powerful work flow for robotics, where robots can learn
in simulation and properly perform in real flights. The
experiments have been run in a wide variety of conditions,
demonstrating the generalization capability of the approach.
To the best of the authors knowledge, this is the first
work that addresses the UAV landing maneuver on top
of a moving platform by means of a state-of-the-art deep
reinforcement learning algorithm, trained in simulation and
tested in real flights. Concerning the complexity of the
landing problem (and other type of robotic problems),

other continuous deep reinforcement learning algorithms
can be integrated in our reinforcement learning simulation
framework, since there is an ongoing innovation in this
type of algorithms. As an immediate future work, the
altitude (z axis) can be included in the states and actions
spaces and some prediction-based solution can be tested.
Furthermore, the input to the algorithm can be changed from
a continuous space of variables to raw pixels, in order to test
its generalization capability from a higher amount of noisy
information.

Acknowledgements This work was supported by the Spanish
Ministry of Science (Project DPI2014-60139-R). The LAL UPM
and the MONCLOA Campus of International Excellence are also
acknowledged for funding the predoctoral contract of one of the
authors.

An introductory version of this paper was presented in the 2017
International Conference on Unmanned Aircraft Systems (ICUAS),
held in Miami, FL USA, on 13–16 June 2017.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Rucco, A., Sujit, P.B., Aguiar, A.P., Sousa, J.B., Pereira, F.L.:
Optimal rendezvous trajectory for unmanned aerial-ground vehicles.
arXiv:1612.06100 (2016)

2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensor-
flow: Large-scale machine learning on heterogeneous distributed
systems. arXiv:1603.04467 (2016)

3. Borowczyk, A., Nguyen, D.-T., Phu-Van Nguyen, A., Nguyen,
D.Q., Saussié, D., Ny, J.L.: Autonomous Landing of a multirotor
micro air vehicle on a high velocity ground vehicle. In: IFAC
World Congress (2017)

4. Ananthakrishnan, U.S., Akshay, N., Manikutty, G., Bhavani, R.R.:
Control of quadrotors using neural networks for precise landing
maneuvers (2017)

5. Araar, O., Aouf, N., Vitanov, I.: Vision based autonomous landing
of multirotor uav on moving platform. J. Intell. Robot. Syst. 85(2),
369–384 (2017)

6. Arora, S., Jain, S., Scherer, S., Nuske, S., Chamberlain, L.,
Singh, S.: Infrastructure-free shipdeck tracking for autonomous
landing. In: 2013 IEEE International Conference on Robotics and
Automation (ICRA), pp. 323–330 (2013)

7. Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based
mav navigation in unknown and unstructured environments. In:
2010 IEEE International Conference on Robotics and Automation
(ICRA), pp. 21–28. IEEE (2010)

8. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,
J., Tang, J., Zaremba, W.: Openai gym. arXiv:1606.01540 (2016)

9. Cantelli, L., Mangiameli, M., Melita, C.D., Muscato, G.: Uav/Ugv
cooperation for surveying operations in humanitarian demining.
In: 2013 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), pp. 1–6. IEEE (2013)

10. Dorigo, M., Colombetti, M.: Robot Shaping: an Experiment in
Behavior Engineering. MIT Press, Cambridge (1998)

11. Espié, E., Guionneau, C., Wymann, B., Dimitrakakis, C., Coulom,
R., Sumner, A.: Torcs-the open racing car simulator. Available at:
http://torcs.sourceforge.net (2005)

12. Falanga, D., Zanchettin, A., Simovic, A., Delmerico, J., Scara-
muzza, D.: Vision-based autonomous quadrotor landing on a
moving platform

13. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: Robot
operating system (ROS): the complete reference (Volume 1),
chap. RotorS—A Modular Gazebo MAV Simulator Framework,
pp. 595–625. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-26054-9 23

14. Gautam, A., Sujit, P.B., Saripalli, S.: A survey of autonomous
landing techniques for uavs. In: 2014 International Conference on
Unmanned Aircraft Systems (ICUAS) (2014)

15. Gautam, A., Sujit, P.B., Saripalli, S.: Application of Guidance
Laws to Quadrotor Landing. In: 2015 International Conference on
Unmanned Aircraft Systems (ICUAS) (2015)

16. Giusti, A., Guzzi, J., Cireşan, D.C., He, F.L., Rodrı́guez, J.P.,
Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro,
G., et al.: A machine learning approach to visual perception of
forest trails for mobile robots. IEEE Robotics and Automation
Letters 1(2), 661–667 (2016)

17. Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous
deep q-learning with model-based acceleration. In: International
Conference on Machine Learning, pp. 2829–2838 (2016)

18. Hu, B., Lu, L., Mishra, S.: Fast, safe and precise landing of a
quadrotor on an oscillating platform. In: 2015 American Control
Conference (ACC) (2015)

19. Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE
Trans. Syst. Man Cybern. 1(4), 364–378 (1971)

20. Kai, W., Chunzhen, S., Yi, J.: Research on adaptive guidance
technology of uav ship landing system based on net recovery.
Procedia Engineering 99, 1027–1034 (2015)

21. Kelchtermans, K., Tuytelaars, T.: How hard is it to cross
the room?–training (recurrent) neural networks to steer a uav.
arXiv:1702.07600 (2017)

22. Kendoul, F., Ahmed, B.: Bio-inspired taupilot for automated aerial
4d docking and landing of unmanned aircraft systems. In: 2012
IEEE/RSJ International Conference on Intelligent Robots and
Systems (2012)

23. Kim, D.K., Chen, T.: Deep neural network for real-time
autonomous indoor navigation. arXiv:1511.04668 (2015)

24. Kim, J., Jung, Y., Lee, D., Shim, D.H.: Landing control on a
mobile platform for multi-copters using an omnidirectional image
sensor. J. Intell. Robot. Syst. 84(1–4), 529–541 (2016)

25. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in
robotics: a survey. Int. J. Robot. Res. 32(11), 1238–1274 (2013)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-
tion with deep convolutional neural networks. In: Advances in
Neural Information Processing Systems, pp. 1097–1105 (2012)

27. Lee, D., Ryan, T., Kim, H.J.: Autonomous landing of a vtol uav
on a moving platform using image-based visual servoing. In:
2012 IEEE International Conference on Robotics and Automation
(2012)

28. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,
Silver, D., Wierstra, D.: Continuous control with deep reinforce-
ment learning. arXiv:1509.02971 (2015)

29. Ling, K., Chow, D., Das, A., Waslander, S.L.: Autonomous
maritime landings for low-cost vtol aerial vehicles. In: 2014
Canadian Conference on Computer and Robot Vision (2014)

30. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley,
T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep
reinforcement learning. In: International Conference on Machine
Learning, pp. 1928–1937 (2016)

31. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D., Riedmiller, M.: Playing atari with deep
reinforcement learning. arXiv:1312.5602 (2013)

32. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs,
J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating
system. In: ICRA Workshop on Open Source Software, vol. 3, p.
5. Kobe (2009)

33. Rezelj, A.: Autonomous charging of a quadrocopter by landing at
a mobile platform (2013)

34. Rodriguez-Ramos, A., Sampedro, C., Bavle, H., Milosevic, Z.,
Garcia-Vaquero, A., Campoy, P.: Towards fully autonomous
landing on moving platforms for rotary unmanned aerial vehicles.
In: 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), pp. 170–178. IEEE (2017)

35. Sadeghi, F., Levine, S.: rl: real single image flight without a single
real image. 12, arXiv:1611.04201 (2016)

36. Sampedro, C., Bavle, H., Rodrı́guez-Ramos, A., Carrio, A.,
Fernández, R.A.S., Sanchez-Lopez, J.L., Campoy, P.: A fully-
autonomous aerial robotic solution for the 2016 international
micro air vehicle competition. In: 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), pp. 989–998. IEEE
(2017)

37. Sanchez-Lopez, J.L., Fernández, R.A.S., Bavle, H., Sampedro, C.,
Molina, M., Pestana, J., Campoy, P.: Aerostack: an architecture
and open-source software framework for aerial robotics. In:
2016 International Conference on Unmanned Aircraft Systems
(ICUAS), pp. 332–341. IEEE (2016)

38. Santana, P., Correia, L., Mendonça, R., Alves, N., Barata, J.:
Tracking natural trails with swarm-based visual saliency. J. Field
Rob. 30(1), 64–86 (2013)

39. Serra, P., Cunha, R., Hamel, T., Cabecinhas, D., Silvestre, C.:
Landing of a quadrotor on a moving target using dynamic image-
based visual servo control. IEEE Trans. Robot. 32(6), 1524–1535
(2016)

40. Shaker, M., Smith, M.N., Yue, S., Duckett, T.: Vision-based
landing of a simulated unmanned aerial vehicle with fast
reinforcement learning. In: 2010 International Conference on
Emerging Security Technologies (EST), pp. 183–188. IEEE
(2010)

41. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Ried-
miller, M.: Deterministic policy gradient algorithms. In: Proceed-
ings of the 31st International Conference on Machine Learning
(ICML-14), pp. 387–395 (2014)

42. Skoczylas, M.: Vision analysis system for autonomous landing of
micro drone. Acta Mechanica et Automatica 8(4), 199–203 (2015)

43. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduc-
tion, vol. 1. MIT Press, Cambridge (1998)

44. Todorov, E., Erez, T., Tassa, Y.: Mujoco: a physics engine for
model-based control. In: 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5026–5033. IEEE
(2012)

45. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the brownian
motion. Phys. Rev. 36(5), 823 (1930)

46. Vlantis, P., Marantos, P., Bechlioulis, C.P., Kyriakopoulos, K.J.:
Quadrotor landing on an inclined platform of a moving ground
vehicle. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA) (2015)

47. Wenzel, K.E., Masselli, A., Zell, A.: Automatic take off, tracking
and landing of a miniature uav on a moving carrier vehicle. J.
Intell. Robot. Syst. 61(1–4), 221–238 (2011)

48. Zamora, I., Lopez, N.G., Vilches, V.M., Cordero, A.H.: Extending
the openai gym for robotics: a toolkit for reinforcement learning
using ros and gazebo. arXiv:1608.05742 (2016)

49. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control
policies for autonomous aerial vehicles with mpc-guided policy
search. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 528–535. IEEE (2016)

Alejandro Rodriguez-Ramos is a Telecommunication Engineer
(major in electronic and microelectronic) graduated from Universidad
Politécnica de Madrid (UPM, Spain). Currently, he is working as a
researcher in the Centre for Automation and Robotics of UPM-CSIC.
His PhD major is Artificial Intelligence (AI) applied to aerial robotics,
mainly focused on Deep Learning and Deep Reinforcement Learning
techniques. He has participated in international competitions, being
awarded with the 2nd prize in the 2017 International Micro Aerial
Vehicles competition (IMAV 2017). Previously, he has been working
for more than a year in the aerospace sector, contributing to projects
of the European Space Agency (ESA). He has broad international
experience, since he has worked as a researcher assistant at Aalto
University (Espoo, Finland) for a year.

Carlos Sampedro received the Master’s degree in Automation and
Robotics from the Technical University of Madrid, Madrid, Spain,
in July 2014. He is currently working toward the PhD degree in the
Computer Vision and Aerial Robotics Lab belonging to the Centre
for Automation and Robotics (UPM-CSIC). His research interests
include object detection and recognition using machine learning and
deep learning techniques and the development of Deep Reinforcement
Learning algorithms applied to aerial robotics. Mr. Sampedro has
received a pre-doctoral grant from the Technical University of Madrid
in January 2017.

Hriday Bavle is a Ph.D. student at Computer Vision and Aerial
Robotics Group (CVAR), Universidad Politecnica de Madrid (UPM),
Spain. He received his Bachelors in Aerospace and Masters in
Avionics from Amity University, India. Aerial robotics being his core
research field, his specialization includes Localization and Mapping
techniques applied to UAVs in unknown indoor environments using
several computer vision and sensor fusion techniques. He is one of lead
developers and testers of the Aerostack software framework developed
in the CVAR group. He is also responsible of the entire UAV hardware
assembly and maintenance and the lead pilot of the all UAVs within
the CVAR group. He has been an active team member in several events
of the CVAR group, namely European night of researchers (2015) and
the Internationale Micro Aerial Vehicles Competition (IMAV 2016)
and team captain at IMAV 2017, where incredible autonomous UAV
capabilities using the Aerostack were demonstrated.

Paloma de la Puente obtained her engineering degree in Automatic
Control and Electronics in November 2007 and her Ph.D. in Robotics
and Automation in December 2012, both from Universidad Politecnica
de Madrid (UPM). She enjoyed a research stay as pre-doctoral
visitor at Caltech. After finishing her PhD she was a post- doctoral
researcher at DISAM-UPM and at ACIN Institute of Automation and
Control-Vienna University of Technology. She also had professional
experience at Ixion Industry and Aerospace and she is currently
Assistant Professor at UPM. Her main research interests are related to
navigation, mapping, SLAM, spatial cognition, sensor data processing,
human-robot interaction for service robotics and systems engineering.
She has participated in several national and European projects and also
in international robotics competitions.

Pascual Campoy is Full Professor on Automatics at the Universidad
Politécnica Madrid UPM (Spain) and visiting professor in TUDelft
(The Netherlands), he has also been visiting professor at Tong Ji
University (Shanghai-China) and Q.U.T. (Australia). He currently
lectures on Control, Machine Learning and Computer Vision.

He is leading the Research Group on “Computer Vision and Aerial
Robotics” at U.P.M. within the Centre of Automatics and Robotics
(C.A.R.), whose activities are aimed at increasing the autonomy of the
Unmanned Aerial Vehicles (UAV) by exploiting the powerful sensor of
Vision, using cutting-edge technologies in Image Processing, Control
and Artificial Intelligence.

He has been head director of over 40 R&D projects, including R&D
European projects, national R&D projects and over 25 technological
transfer projects directly contracted with the industry. He is author of
over 200 international scientific publications and nine patents, three
of them registered internationally. He is awarded several international
prices in UAV competitions: IMAV12, IMAV13, IARC14, IMAV16
and IMAV17.

