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This work presents a novel technique that performs

both orientation and distance localization of a sound
source in a three-dimensional (3D) space using only the

interaural time difference (ITD) cue, generated by a

newly-developed self-rotational bi-microphone robotic

platform. The system dynamics is established in the

spherical coordinate frame using a state-space model.
The observability analysis of the state-space model shows

that the system is unobservable when the sound source

is placed with elevation angles of 90 and 0 degree. The

proposed method utilizes the difference between the az-
imuth estimates resulting from respectively the 3D and

the two-dimensional models to check the zero-degree-

elevation condition and further estimates the elevation

angle using a polynomial curve fitting approach. Also,

the proposed method is capable of detecting a 90-degree
elevation by extracting the zero-ITD signal ’buried’ in

noise. Additionally, a distance localization is performed

by first rotating the microphone array to face toward

the sound source and then shifting the microphone per-
pendicular to the source-robot vector by a predefined

distance of a fixed number of steps. The integrated ro-

tational and translational motions of the microphone

array provide a complete orientation and distance local-

ization using only the ITD cue. A novel robotic plat-
form using a self-rotational bi-microphone array was

also developed for unmanned ground robots performing

sound source localization. The proposed technique was

first tested in simulation and was then verified on the
newly-developed robotic platform. Experimental data

collected by the microphones installed on a KEMAR
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dummy head were also used to test the proposed tech-

nique. All results show the effectiveness of the proposed
technique.

1 INTRODUCTION

The localization problem in the robotic field has been

recognized as the most fundamental problem to make

robots truly autonomous [10]. Localization techniques

are of great importance for autonomous unmanned sys-
tems to identify their own locations (i.e., self-localization)

and situational awareness (e.g., locations of surround-

ing objects), especially in an unknown environment.

Mainstream technology for localization is based on com-
puter vision, supported by visual sensors (e.g., cam-

eras), which, however, are subject to lighting and line-

of-sight conditions and rely on computationally demand-

ing image-processing algorithms. An acoustic sensor (e.g.,

a microphone), as a complementary component in a
robotic sensing system, does not require a line of sight

and is able to work under varying light (or completely

dark) conditions in an omnidirectional manner. Thanks

to the advancement of microelectromechanical technol-
ogy, microphones become inexpensive and do not re-

quire significant power to operate.

Sound-source localization (SSL) techniques have been

developed that identify the location of sound sources

(e.g., speech and music) in terms of directions and dis-
tances. SSL techniques have been widely used in civilian

applications, such as intelligent video conferencing [26,

52], environmental monitoring [49], human-robot inter-

action (HRI) for humanoid robotics [25], and robot mo-
tion planning [37], as well as military applications, such

as passive sonar for submarine detections, surveillance

systems that locate hostile tanks, artillery, incoming

http://arxiv.org/abs/1804.03372v1
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missiles [27], aircraft [7], and UAVs [11]. SSL techniques

have great potential by itself to enhance the sensing ca-

pability of autonomous unmanned systems as well as

working together with vision-based localization tech-

niques.

SSL has been achieved by using microphone arrays

with more than two microphones [38,45,47,48,50]. The

accuracy of the localization techniques based on micro-

phone arrays is dictated by their physical sizes [5,12,56].
Microphone arrays are usually designed using particular

(e.g., linear or circular) structures, which result in their

relatively large sizes and sophisticated control compo-

nents for operation. Therefore, it becomes difficult to

use them on small robots nor large systems due to the
complexity of mounting and maneuvering.

In the past decade, research has been carried out for

robots to have auditory behaviors (e.g. getting atten-

tion to an event, locating a sound source in potentially

dangerous situations, and locating and paying atten-
tion to a speaker) by mimicking human auditory sys-

tems. Humans perform sound localization with their

two ears using integrated three types of cues, i.e., the

interaural level difference (ILD), the interaural time dif-
ference (ITD), and the spectral information [22,35]. ILD

and ITD cues are usually used respectively to identify

the horizontal location (i.e., azimuth angle) of a sound

source with higher and lower frequencies. Spectral cues
are usually used to identify the vertical location (i.e.,

elevation angle) of a sound source with higher frequen-

cies. Additionally, acoustic landmarks aid towards bet-

tering the SSL by humans [55].

To mimic human acoustic systems, researchers have
developed sound source localization techniques using

only two microphones. All three types of cues have been

used by Rodemann et al. [42] in a binaural approach of

estimating the azimuth angle of a sound source, while

the authors also stated that reliable elevation estima-
tion would need a third microphone. Spectral cues were

used by the head-related-transfer-function (HRTF) that

was applied to identify both the azimuth and eleva-

tion angles of a sound source for binaural sensor plat-
forms [20,25,28,29]. The ITD cues have also been used

in binaural sound source localization [15], where the

problem of cone of confusion [51] has been overcome by

incorporating head movements, which also enable both

azimuth and elevation estimation [40,51]. Lu et al. [33]
used a particle filter for binaural tracking of a mobile

sound source on the basis of ITD and motion parallax

but the localization was limited in a two-dimensional

(2D) plane and was not impressive under static condi-
tions. Pang et al. [39] presented an approach for binau-

ral azimuth estimation based on reverberation weight-

ing and generalized parametric mapping. Lu et al. [34]

presented a binaural distance localization approach us-

ing the motion-induced rate of intensity change which

requires the use of parallax motion and errors up to 3.4

m were observed. Kneip and Baumann [32] established

formulae for binaural identification of the azimuth and
elevation angles as well as the distance information of a

sound source combining the rotational and translational

motion of the interaural axis. However, large localiza-

tion errors were observed and no solution was given
to handle sensor noise nor model uncertainty. Rode-

mann [41] proposed a binaural azimuth and distance lo-

calization technique using signal amplitude along with

ITD and ILD cues in an indoor environment with a

sound source ranging from 0.5 m to 6 m. However, the
azimuth estimation degrades with the distance and re-

duced error with the required calibration was still large.

Kumon and Uozumi [31] proposed a binaural system

on a robot to localize a mobile sound source but it re-
quires the robot to move with a constant velocity to

achieve 2D localization. Also, further study was pro-

posed for a parameter α0 introduced in the EKF. Zhong

et al. [46, 54] and Gala et al. [17] utilized the extended

Kalman filtering (EKF) technique to perform orienta-
tion localization using the ITD data acquired by a set

of binaural self-rotating microphones. Moreover, large

errors were observed in [54] when the elevation angle of

a sound source was close to zero.

To the best of our knowledge, the works presented in

the literature for SSL using two microphones based on

ITD cues mainly provided formulae that calculate the

azimuth and elevation angles of a sound source with-

out incorporating sensor noise [32]. The works that use
probabilistic recursive filtering techniques (e.g., EKF)

for orientation estimation [54] did not conduct any ob-

servability analysis on the system dynamics. In other

words, no discussion on the limitation of the techniques
for orientation estimation was found. In addition, no

probabilistic recursive filtering technique was used to

acquire distance information of a sound source. This

paper aims to address these research gaps.

The contributions of this paper include (1) an ob-
servability analysis of the system dynamics for three-

dimensional (3D) SSL using two microphones and the

ITD cue only; (2) a novel algorithm that provides the

estimation of the elevation angle of a sound source when
the states are unobservable; and (3) a new EKF-based

technique that estimates the robot-sound distance. Both

simulations and experiments were conducted to validate

the proposed techniques.

The rest of this paper is organized as follows. Sec-
tion 2 describes the preliminaries. In Section 3, 2D and

3D orientation localization models are presented along

with their observability analysis. In Section 4, a novel
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Fig. 1 Interaural Time Delay (ITD) estimation between signals
y1(t) and y2(t) using the cross-correlation technique.

method is proposed to detect non-observability condi-

tions and a solution to the non-observability problem

is presented. Section 5 presents a distance localization
model with its observability analysis. The EKF algo-

rithm is presented in Section 6. In Sections 7 and 8,

the simulation and experimental results are presented

respectively, followed by Section 9, which concludes the
paper.

2 PRELIMINARIES

2.1 Calculation of ITD

The only cue used for localization in this paper is the
ITD, which is the time difference of a sound signal trav-

eling to the two microphones and can be calculated us-

ing the cross-correlation technique [3, 30].

Consider a single stationary sound source placed in

an environment. Let y1(t) and y2(t) be the sound signals
captured by two spatially separated microphones in the

presence of noise, which are given by [30]

y1(t) = s(t) + n1(t), (1)

y2(t) = δ · s (t+ td) + n2(t), (2)

where s (t) is the sound signal, n1(t) and n2(t) are real

and jointly stationary random processes, td denotes the
time difference of s (t) arriving at the two microphones,

and δ is the signal attenuation factor due to different

traveling distances of the sound signal to the two micro-

phones. It is commonly assumed that δ changes slowly
and s(t) is uncorrelated with noises n1(t) and n2(t) [30].

The cross-correlation function of y1(t) and y2(t) is given

by

Ry1,y2(τ) = E [y1(t) · y2(t− τ)] ,

where E [·] represents the expectation operator. Fig-

ure 1 shows the process of delay estimation between

y1(t) and y2(t), where H1(f) and H2(f) represent scal-
ing functions or pre-filters [30]. Various techniques can

be used to eliminate or reduce the effect of background

noise and reverberations [8, 9, 18, 19, 36, 44]. An im-

proved version of the cross-correlation method incor-
porating H1(f) and H2(f) is called Generalized Cross-

Correlation (GCC) [30], which further improves the es-

timation of time delay.

The time difference of y1(t) and y2(t), i.e., the ITD,

is given by T̂ , argmaxτ Ry1,y2 . The distance difference

of the sound signal traveling to the two microphones is

given by d , T̂ · c0, where c0 is the sound speed and is

usually selected to be 345 m/s.

2.2 Far-Field Assumption

The area around a sound source can be divided into
five different fields: free field, near field, far field, direct

field and reverberant field [1, 21]. The region close to a

source where the sound pressure and the acoustic par-

ticle velocity are not in phase is regarded as the near
field. The range of the near field is limited to a distance

from the source equal to approximately a wavelength

of sound or equal to three times the largest dimension

of the sound source, whichever is the larger. The far

field of a source begins where the near field ends and
extends to infinity. Under the far-field assumption, the

acoustic wavefront reaching the microphones is planar

and not spherical, in the sense that the waves travel in

parallel i.e. the angle of incidence is the same for the
two microphones [14].

2.3 Observability Analysis

Consider a nonlinear system described by a state-space

model

ẋ = f (x) , (3)

y = h (x) , (4)

where x ∈ R
n and y ∈ R

m are the state and output vec-

tors, respectively, and f (·) and h (·) are the process and

output functions, respectively. The observability matrix

of the system described by (3) and (4) is then given
by [23]

Ω =

[

(

∂L0

fh

∂x

)T (

∂L1

fh

∂x

)T

· · ·

]T

,

where the Lie derivatives are given by L0
fh = h (x)

and Lnfh =
∂L

n−1

f
h

∂x
f . The system is observable if the

observability matrix Ω has rank n.

3 Mathematical Models and Observability

Analysis for Orientation Localization

The complete localization of a sound source is usually

achieved in two stages, the orientation (i.e., azimuth
and elevation angles) localization and distance localiza-

tion. In this section, the methodology of the orientation

localization is presented.
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Fig. 2 Top view of the robot illustrating different angle defini-
tions due to the rotation of the microphone array.

Fig. 3 3D view of the system for orientation localization.

3.1 Definitions

As shown in Figures 2 and 3, the acoustic signal gen-

erated by the sound source S is collected by the left

and right microphones, L and R, respectively. Let O be
the center of the robot as well as the two microphones.

The location of S is represented by (D, θ, ϕ), where D

is the distance between the source and the center of the

robot, i.e., the length of segment OS, θ ∈
[

0, π2
]

is the
elevation angle defined as the angle between OS and

the horizontal plane, and ϕ ∈ (−π, π] is the azimuth

angle defined as the angle measured clockwise from the

robot heading vector, p, to OS. Letting unit vector q

be the orientation (heading) of the microphone array, β
be the angle between p and q, and ψ be the angle be-

tween q and OS, both following a right hand rotation

rule, we have

ϕ = ψ + β. (5)

For a clockwise rotation, we have β (t) = ωt, where
ω is the rotational speed of the two microphones, and

ψ (t) = ϕ − ωt. In the shaded triangle, △SOF , shown

in Figures 3 and 4, define α , ∠SOF and we have

α + ψ = π
2 and cosα = cos θ sinψ. Based on the far-

field assumption in Section 2.2, we have

d = T̂ · c0 = b cosα = b cos θ sinψ. (6)

Fig. 4 The shaded triangle in Figure 3.

where b is the distance between the two microphones,

i.e. the length of the segment LR.

To avoid cone of confusion [51] in SSL, the two-

microphone array is rotated with a nonzero angular ve-

locity [54]. Without loss of generality, in this paper we

assume a clockwise rotation of the microphone array

on the horizontal plane while the robot itself does not
rotate nor translate throughout the entire estimation

process, which implies that ϕ is constant.

3.2 2D Localization

If the sound source and the robot are on the same hor-

izontal plane, i.e., θ = 0, we have d = b sinψ. Assume

that the microphone array rotates clockwise with a con-

stant angular velocity, ω. Considering the state-space
model for 2D localization with the state x2D , ψ, and

the output as y2D , d, we have

ẋ2D = ψ̇ = −ω, (7)

y2D = b sinψ. (8)

Theorem 1 The system described by Equations (7) and
(8) is observable if 1) b 6= 0 and 2) ω 6= 0 or ψ 6=

2kπ ± π
2 , where k ∈ Z.

Proof The observability matrix [23, 24] for the system

described by Equations (7) and (8) is given by

O2D =
[

b cosψ bω sinψ −bω2 cosψ · · ·
]T
. (9)

The system is observable if O2D has rank one, which

implies b 6= 0. If ω = 0, observability requires that

cosψ 6= 0, which implies ψ 6= 2kπ ± π
2 . If ω 6= 0, O2D

is full rank for all ψ.

Remark 1 Since the two microphones are separated by

a non-zero distance, (i.e., b 6= 0) and the microphone
array rotates with a non-zero constant angular velocity

(i.e., ω 6= 0), the system is observable in the domain of

definition.
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3.3 3D Localization

Considering the state-space model for 3D localization

with the state x3D , [θ, ψ]T , and the output as y3D ,

d, we have

ẋ3D =

[

θ̇

ψ̇

]

=

[

0

−ω

]

, (10)

y3D = b cos θ sinψ. (11)

Theorem 2 The system described by Equations (10)
and (11) is observable if 1) b 6= 0, 2) ω 6= 0, 3) θ 6= 0o,

and 4) θ 6= 90o.

Proof The observability matrix for (10) and (11) is given

by

O3D =













−b sin θ sinψ b cos θ cosψ

bω sin θ cosψ bω cos θ sinψ

bω2 sin θ sinψ −bω2 cos θ cosψ

−bω3 sin θ cosψ −bω3 cos θ sinψ
· · · · · ·













. (12)

It should be noted that higher-order Lie derivatives do

not add rank to O3D. Consider the squared matrix con-

sisting of the first two rows of O3D

Ω3D =

[

−b sin θ sinψ b cos θ cosψ
bω sin θ cosψ bω cos θ sinψ

]

,

and the determinant of the Ω3D is

det {Ω3D} = −b2ω sin θ cos θ.

The system is observable if

b 6= 0, ω 6= 0, θ 6= 0o, and θ 6= 90o. (13)

Further investigation can be done by selecting two even

(or odd) rows from O3D to form a squared matrix,
whose determinant is always zero. .

Remark 2 As it is always true that b 6= 0 and ω 6= 0

due to Remark 1, the system is observable only when
θ 6= 0o and θ 6= 90o. Experimental results presented by

Zhong et al. [54] using a similar model illustrates large

estimation error when θ is close to zero.

To further investigate the system observability, consider
the following two special cases: (1) θ is known and (2)

ψ is known.

Assume that θ is known and consider the following

system

ẋψ = ψ̇ = −ω, (14)

yψ = b cos θ sinψ. (15)

Corollary 1 The azimuth angle in the system described

by Equations (14) and (15) is observable if 1) b 6= 0,

2) ω 6= 0, and 3) θ 6= 90o.

Proof The observability matrix associated with (14) and (15)

is given by

Oψ =
[

b cos θ cosψ bω cos θ sinψ · · ·
]T
. (16)

So, the system is observable if,

b 6= 0, θ 6= 90o, and ω 6= 0 or ψ 6= 2kπ ±
π

2
. (17)

This shows that ψ is unobservable when θ = 90o.

Assume that ψ is known and consider the following
system

ẋθ = θ̇ = 0, (18)

yθ = b cos θ sinψ. (19)

Corollary 2 The elevation angle in the system described

by Equations (18) and (19) is observable if the follow-

ing conditions are satisfied: 1) b 6= 0, 2) ω 6= 0, and

3) θ 6= 0o.

Proof The observability matrix asscoiated with (18) and (19)

is given by

Oθ =
[

−b sin θ sinψ 0 · · ·
]T
. (20)

So the system is observable if

b 6= 0, θ 6= 0o, and ψ 6= kπ. (21)

As ψ is time-varying, so it won’t stay at kπ. It can be

seen that θ is unobservable when θ = 0o.

4 Complete Orientation Localization

To handle the unobservable situations, i.e., θ = 0o and

θ = 90o, we present a novel algorithm in this section

that utilizes both the 2D and 3D localization models
to enable the orientation localization of a sound source

residing anywhere in the domain of definition, i.e., θ ∈

[0, π/2] and ϕ ∈ (−π, π].
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Fig. 5 The signals after taking the Discrete Fourier transform
(DFT) of the noised signal d(t) with the source located at θ = 50o

and θ = 85o, respectively. The two big peaks in the upper figure
occur at ±2π/5 rad/sec (i.e., the angular velocity of the rotation
of the microphone array) when θ = 50o, whereas small peaks are
present in the bottom figure when θ = 85o.
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Fig. 6 Estimated amplitudes Âd of the signal d(t) using the DFT
for the source located at θ = 50o and θ = 85o, respectively. The
maximum of Âd occurs when the frequency is at ±2π/5 rad/sec.
When θ = 85o, the maximum of Âd is less than 0.017 m.

4.1 Identification of θ = 90o

ITD could be zero due to either 90o elevation or ab-

sence of sound, the latter of which can be detected by
evaluating the power reception of microphones. In this

paper, we focus on the former case.

Assume that the sensor noise is Gaussian, which

dominates the ITD signal when θ gets close to 90o.
To check the presence of the signal d(t) buried in the

noise, we can first apply the Discrete Fourier Transform

(DFT) onto the stored d (t). The N -point DFT of the

signal d(t) results in a sequence of complex numbers in

the form ofXreal+jXimag, whereXreal and Ximag rep-
resent the real and imaginary coordinates of the com-

plex number. The magnitude of the complex number is

then obtained by |X(ω)| =
√

X2
real +X2

imag. Figure 5

shows the resulting magnitude (|X(ω)|) signals of d(t)

after taking DFT when the sound source is placed at
θ = 50o and 85o, respectively, in simulation. Two big

peaks in the top subfigure (i.e., when θ = 50o) are ob-

served when the frequency is at ±2π/5 rad/sec (i.e.,

the angular velocity of the rotation of the microphone

array). However, the peaks observed in the bottom sub-

figure (i.e., when θ = 85o) are comparatively very small.

To eliminate the noise in Figure 5, define the es-

timated amplitude of the ITD signal as Âd(ω) = 2
N

·

|X(ω)|. Figure 6 shows the estimated amplitude (Âd)

of the signal d(t) resulting from Figure 5. The bottom

subfigure (i.e., when θ = 85o) shows that the maximum

value of Âd is very small compared to the top subfigure
(i.e., when θ = 50o). The ITD is considered as zero if the

maximum value of the estimated amplitude Âd (when

the frequency equals the angular velocity of the rota-

tion of the microphone array) is less than a predefined

threshold, dthreshold. The selection of dthreshold deter-
mines the accuracy of the estimation when the sound

source is around 90o elevation. The value of dthreshold,

for example, can be selected as 0.017 m, which corre-

sponds to θ = 85o as in Figure 6, thereby giving an
accuracy of 5o.

4.2 Identification of θ = 0o

Theorem 1 guarantees accurate azimuth angle estima-

tion using the 2D model when the sound source is lo-

cated with zero elevation. We observed that when the

elevation of the sound source is not close to zero, the

estimation of the azimuth angle provided by the 2D
model is far off the real value.
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2D and 3D model’s estimated ϕ comparison at θ = 0◦
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ϕ
(d
eg
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Fig. 7 Comparison of azimuth angle estimations using the 2D
and 3D localization models when a sound source is located at
θ = 0o and θ = 20o, respectively.

On the other hand, Theorem 2 guarantees that the

azimuth angle estimation using the 3D model is accu-

rate for all elevation angles except for θ = 90o, which

is detected by the approach in Section 4.1. Therefore,
the estimations resulting from both the 2D model 3D

models will be identical if the sound source is located

at θ = 0o, as shown in Figure 7. The root-mean-square
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error (RMSE) is used as a measure of the difference be-

tween the two azimuth estimations as it includes both

mean absolute error (MAE) as well as additional infor-

mation related to the variance [13]. This error is depen-

dent on the value of elevation angle and it increases as
the elevation angle increases, as shown in Figure 8.

0

RMSE between 2D and 3D model's estimated azimuth
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0
15
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Fig. 8 RMSE between 2D and 3D localization model’s estimated
azimuth angles.

RMSE (deg)
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θ
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Polyfit approximation of estimated elevation

Actual elevation
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Fig. 9 Approximation of the elevation angle from the RMSE
data using the least square fitted polynomial.

In order to get an accurate estimate of the elevation

angle close to zero, a polynomial curve fitting approach

is used to map (in a least-square sense) the RMSE val-

ues to the elevation angles. Different RMSE values are

collected beforehand in the environment where the lo-
calization would be done. The RMSE values associated

with the same elevation angle but different azimuth

angles express small variations, as seen in Figure 8.

Therefore, for a particular elevation angle, the mean of
all RMSE values with different azimuth angles will be

selected as the RMSE value corresponding to the ele-

vation angle. An example curve is shown in Figure 9.

Algorithm 0.1 Complete 3D orientation localization

1: Calculate the ITD, T̂ , from the recorded signals of two micro-
phones.
2: IF Âd < dthreshold THEN

3: The elevation angle of the sound source is θ = 90o and the
azimuth angle, ϕ, is undefined.
4: ELSE

5: Estimate the azimuth ϕ2D and ϕ3D using 2D and 3D lo-
calization models, respectively
6: Calculate the RMSE between ϕ2D and ϕ3D

7: IF RMSE < RMSEthreshold THEN

8: Use polynomial curve fitting to determine θ using the
calculated RMSE value and estimate ϕ using either 2D or 3D
localization model
9: ELSE estimate both θ and ϕ using the 3D localization
model
10: END IF

11: END IF

4.3 Complete Orientation Localization Algorithm

Calculate ITD

Start

End

Elevation ≈ 90ο and

azimuth is undefined

Elevation ≈ 0ο, use 2D 

model to estimate 

azimuth and curve 

fitting to estimate 

elevation

Yes

Estimate 

azimuth using 

3D model

Estimate 

azimuth using 

2D model

No

Use 3D model 

estimation for azimuth 

and elevation

Yes

���� d����	�
��?

No

RMSE < RMSEthreshold ?

Calculate RMSE

Fig. 10 Flowchart addressing the non-observability problems re-
flected in the 3D localization model.

Figure 10 illustrates the flowchart of the proposed
algorithm for the complete orientation localization. The

pseudo code of the proposed complete orientation local-

ization is given in Algorithm 0.1. The RMSEthreshold
is the value used to check when the elevation angle is
close to 0o. This threshold value decides the point until

which the curve fitting is required, ansd after which the

3D model can be trusted for elevation estimation.
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Fig. 11 3D view of the system for distance localization.

Fig. 12 Gray triangle in Figure 11.

5 Distance Localization

The novel distance localization approach presented in

this section depends on an accurate orientation local-

ization. Assume that the angular location of the sound
source has been obtained by using Algorithm 0.1 and

the microphone array has been regulated facing toward

the sound source, as shown in Figure 11. The proposed

distance localization approach requires the microphone

array, LR, to translate with a distance ∆d along the
line perpendicular to the center-source vector (on the

horizontal plane). This translation shifts the center of

the microphone array, O, to a new point, O′, and γ is

defined as the angle between vectors O′S and OS, as
shown in Figure 12. Note that the center of the robot,

O, is unchanged. The objective is to estimate distance

D between the center of the robot O and the source S.

5.1 Mathematical Model for Distance Localization

Consider the gray triangle shown in Figure 12. Based

on the far-field assumption in Section 2.2, the length

R′P ′ is given by

d′ = b sin γ. (22)

In triangle △SOO′, we have

sin γ =
△d

√

(△d)2 +D2
. (23)

Defining the state as xdist = D and output as ydist, the

state-space model is given by

ẋdist = 0, (24)

ydist =
b △d

√

(△d)2 +D2
. (25)

Theorem 3 The system described by Equations (24) and (25)
is observable if the following conditions are satisfied:

1) b 6= 0, 2) △d 6= 0, and 3) D 6= 0.

Proof The observability matrix associated with (24) and (25)

is given by

Odist =
[

−2 b2 (△d)2 D
(△d)2+D2 · · ·

]

. (26)

So the system is observable if

b 6= 0, △d 6= 0, and D 6= 0. (27)

Remark 3 As the microphones are separated by a non-
zero distance, i.e., b 6= 0, and the microphone array is

being translated by a non-zero distance, i.e., △d 6= 0,

the system is always observable unless the sound source

and the robot are at same location making D = 0,

which is not in the scope of discussion of this paper.

6 Extended Kalman Filter

The estimation for the angles and distance of the sound
source is conducted by extended Kalman filters. De-

tailed mathematical derivation of the EKF can be found

in [4]. Algorithm 0.2 summaries the EKF procedure

used in this paper for SSL. The sensor covariance ma-

trix (R) is defined as σ2
w , and the process covariance

matrix (Q) is defined as σ2
v for the distance localization,

σ2
v1 for the 2D orientation localization and diag{σ2

v1, σ
2
v2}

for the 3D orientation localization, respectively, where

σvi is the process noise variance corresponding to the
ith state and σw is the sensor noise variance. Key pa-

rameters are listed in Table 1. The complete EKF-based

SSL procedure is illustrated in Figure 13.
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Table 1 EKF parameters.

Parameter
Angular Distance

localization localization

Process noise variance (σvi,i = 1, 2) 0.01 0.1

Sensor noise variance (σw) 0.01 0.001

Initial azimuth angle estimate (ϕinitial) 5o –

Initial elevation angle estimate (θinitial) 5o –

Initial distance estimate (Dinitial) – 1 m

Algorithm 0.2 Pseudo code for EKF [4]

1: Initialize: x̂
2: At each value of sample rate Tout,
3: FOR i = 1 to N DO

Prediction

4: x̂ = x̂+ (Tout

N
) f(x̂, u)

5: AJ = ∂f
∂x

(x̂, u)

6: P = P + (Tout
N

)(AJP + PAT
J
+Q)

Update

7: CJ = ∂h
∂x

(x̂, u)

8: K = PCT
J
(R + CJPCT

J
)−1

9: P = (I −KCJ)P
10: x̂ = x̂+K(y[n]− h(x̂, u[n])
11: END FOR

Align the microphone array 

perpendicular to the source-center vector

Estimate the azimuth and elevation 

angle for each rotation step using EKF

Estimate the distance for each 

shift using EKF

Fix the center of the microphone array

Shift the center of the microphone-array continuously 

by a small fixed distance at a constant speed

Rotate the array clockwise at a 

constant angular velocity
Angle 

estimation

Distance

estimation

Fig. 13 Block diagram showing the process for the proposed
complete angular and distance localization of a sound source us-
ing successive rotational and translational motions of a set of two
microphones.

7 Simulation Results

In this section, we present the simulation results of the

proposed localization technique for both angle and dis-

tance localization of a sound source.

7.1 Simulation Environment

The Audio Array Toolbox [16] is used to simulate a rect-
angular space using the image method described in [2].

The robot was placed in the center (origin) of the room.

The two microphones were separated by a distance of

0.18 m from each other which is equal to the approxi-
mate distance between human ears. The sound source

and the microphones are assumed omnidirectional and

the attenuation of the sound is calculated as per the

specifications in Table 2.

Table 2 Simulated room specifications

Parameter Value

Dimension 20m x 20m x 20m

Reflection coefficient of each wall 0.5

Reflection coefficient of the floor 0.5

Reflection coefficient of the ceiling 0.5

Velocity of the sound 345 m/s

Temperature 22oC

Static pressure 29.92 mmHg

Relative humidity 38 %

7.2 Validation of Observablity

As discussed earlier, Theorem 1 shows that the 2D

model is always observable, however, it does not pro-

vides any elevation information of the sound source. On
the other hand, Theorem 2 shows that the 3D model

is unobservable when the elevation angle of the sound

source is 0o or 90o. In order to validate the observabil-

ity analysis, localization was performed in the simulated
environment.

For a sound source located on a 2D plane, Figure 14

shows the average of absolute estimation errors versus

different azimuth angles with the sound source at dis-
tance of 5 m and 10 m to the robot, respectively. It can

be seen that all errors are smaller than 1.8o and the

mean of the average of absolute errors is approximately

1o for the two cases.

To verify the observability conditions for the 3D

model as described by Equations (10) and (11), the
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Fig. 14 Average of absolute errors in azimuth angle estimation
using 2D model with a sound source placed at different azimuth
locations at a constant distance of 5 m and 10 m from the center
of the robot.
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Fig. 15 Sound source locations with a fixed distance of 5 m to

the center of the robot in the simulated room.
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Fig. 16 Average of absolute errors in elevation estimation us-
ing the 3D localization model. Relatively large errors illustrate
the non-observability condition in elevation angle estimation with
sound source placed around 0o elevation, as described by Theo-
rem 2 .

sound source is placed at different locations with a dis-

tance of 5 m from the robot in the simulated room,

which evenly cover the hemisphere above the ground,
as shown in Figure 15. Figure 16 shows the averaged

absolute errors in the elevation estimation versus ac-

tual azimuth and elevation angles of the sound source.

Larger errors were observed when the elevation was
close to 0o, which coincides with Theorem 2. Figure 17

shows the averaged absolute errors in the azimuth angle

estimation for a single sound source at different posi-

0
20

40
60

80
100 −200

−100

0

100

200

0

50

100

150

200

Actual ϕ (deg)

Average absolute errors in estimated azimuth

Actual θ (deg)

E
rr
o
r
in

ϕ
(d
eg
)

Fig. 17 Average of absolute errors in azimuth estimation us-
ing the 3D localization model. Relatively large errors illustrate
the non-observability condition in azimuth angle estimation with
sound source placed around 90o elevation, as described by Theo-
rem 2 .

tions. Larger errors were observed when the elevation

was close to 90o, which again echoes Theorem 2.

7.3 Simulation Results for Orientation Localization

A number of experiments were performed to validate
the performance of the proposed SSL technique for ori-

entation localization, as described in Algorithm 0.1.

White noise and speech signals were used as a sound

source which was placed individually at different loca-

tions in the simulated room with specifications sum-
marized in Table 2. The microphone array was rotated

with an angular velocity of ω = 2π/5 rad/sec in the

clockwise direction for three complete revolutions. The

ITD was calculated after every 1o rotation followed by
the estimation performed using the EKF with parame-

ters given in Table 1. Four different sets of experiments

were performed keeping the source at different loca-

tions. In first two sets of experiments, the source was

placed in all four quadrants including the axes at dif-
ferent distances, keeping the elevation constant at 20o

and 60o. To validate the performance of the proposed

solution to the non-observability conditions, other two

sets experiments were performed by keeping the sound
source at elevation close to 0o and 90o. The results of

the localization are presented in Tables 3 and 4. It can

be seen that orientation localization is achieved with

errors less than 4o using speech as well as white noise

sound source. Large errors are observed when the eleva-
tion of the sound source is around 0o and 90o. Further,

the errors with source elevation around 0o is less as com-

pared to source elevation around 90o. This was achieved

by using polynomial curve fitting approach mentioned
in Section 4.2, with RMSEthreshold = 1.9o, which cor-

responds to θ = 15o on the fitted curve shown in Fig-

ure 9 . The value dthreshold was calculated as 0.017 m
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Table 3 Simulation results of orientation localization for speech

Expt. Act. Act. Est. Avg of abs Act. Est. Avg of abs
No. D(m) ϕ(o) ϕ(o) error (o) θ(o) θ(o) error (o)

1 a 5 0 0.60 0.60

20

20.39 0.39
1 b 5 50 51.03 1.03 21.44 1.44
1 c 7 90 91.21 0.21 20.83 0.83
1 d 7 120 121.57 1.57 20.96 0.96
1 e 3 180 181.03 1.03 20.16 0.16
1 f 3 -40 -39.33 0.67 19.10 0.90
1 g 10 -90 -88.85 1.15 21.66 1.66
1 h 10 -140 -139.52 0.48 21.18 1.18

2 a 5 0 2.31 2.31

60

60.68 0.68
2 b 5 50 50.65 0.65 60.53 0.53
2 c 7 90 91.79 1.79 60.70 0.70
2 d 7 120 121.85 1.85 60.84 0.84
2 e 3 180 181.66 1.66 60.05 0.05
2 f 3 -40 -38.66 1.34 60.38 0.38
2 g 10 -90 -89.38 0.62 59.62 0.38
2 h 10 -140 -138.20 1.80 59.78 0.22

3 a 5 50 50.69 0.31 0 3.39 3.39

3 b 7 -120 -119.00 1.00 4 2.40 1.60

4 a 5 -40 not def. not def. 86 90.00 4.00

4 b 7 150 not def. not def. 89 90.00 1.00

Table 4 Simulation results of orientation localization for white noise

Expt. Act. Act. Est. Avg of abs Act. Est. Avg of abs
No. D(m) ϕ(o) ϕ(o) error (o) θ(o) θ(o) error (o)

1 a 5 0 1.18 1.18

20

19.66 0.34
1 b 5 50 51.03 1.03 20.44 0.44
1 c 7 90 90.25 0.25 20.11 0.11
1 d 7 120 121.35 1.35 19.70 0.30
1 e 3 180 180.41 0.41 20.48 0.48
1 f 3 -40 -39.44 0.56 19.75 0.25
1 g 10 -90 -89.11 0.89 19.71 0.29
1 h 10 -140 -139.67 0.33 21.18 1.18

2 a 5 0 1.31 1.31

60

60.38 0.38
2 b 5 50 51.59 1.59 60.39 0.39
2 c 7 90 90.74 0.74 60.87 0.87
2 d 7 120 121.21 1.21 60.39 0.39
2 e 3 180 181.16 1.16 60.51 0.51
2 f 3 -40 -38.66 1.34 60.41 0.41
2 g 10 -90 -88.90 1.10 60.70 0.70
2 h 10 -140 -138.64 1.36 60.57 0.57

3 a 5 50 51.45 1.45 0 1.57 1.57

3 b 7 -120 -118.36 1.64 4 1.57 2.43

4 a 5 -40 not def. not def. 86 90.00 4.00

4 b 7 150 not def. not def. 89 90.00 1.00

(which corresponds to θ = 85o, thereby giving an ac-

curacy of 5o when the sound source gets close to 90o

elevation) for the simulated environment with specifi-

cation given in Table 2.

7.4 Simulation Results for Distance Localization

Speech and white-noise sounds were also used to test
the performance of the distance localization. A single

sound source was placed at different locations and the

ITD signal was recorded while the microphone array

was continuously shifted for 200 steps each with a dis-

tance of △d = 0.0007 m. The results are summarized
in Tables 5 and 6. The key parameters of the EKF are

given in Table 1. The results for the distance localiza-

tion with a sound source placed at different locations

are shown in Figure 18. It is observed that the error

in the estimation converges quickly and a total shift
of microphone array of approximately 3 cm is sufficient

for the estimates to completely converge to and remain

in the three standard deviation bounds. The average of

absoute error in the estimation is found to be less than
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Table 5 Simulation results of distance localization using speech
sound source

Expt. Act. Act. Act. Est. Avg of abs
No. ϕ(o) θ(o) D(m) D(m) error (m)

1 a 0

20

5 5.01 0.01
1 b 50 5 5.01 0.01
1 c 90 7 6.94 0.06
1 d 120 7 6.93 0.07
1 e 180 3 3.01 0.01
1 f -40 3 3.01 0.01
1 g -90 10 9.54 0.46
1 h -140 10 9.81 0.19

2 a 0

60

5 5.02 0.02
2 b 50 5 5.02 0.02
2 c 90 7 6.94 0.06
2 d 120 7 6.94 0.06
2 e 180 3 3.00 0.00
2 f -40 3 3.01 0.01
2 g -90 10 9.52 0.48
2 h -140 10 9.41 0.59

3 a 50 0 5 5.02 0.02

3 b -120 4 7 6.87 0.13

4 a -40 86 5 5.02 0.02

4 b 150 89 7 6.83 0.17

Table 6 Simulation results of distance localization using white
noise sound source

Expt. Act. Act. Act. Est. Avg of abs
No. ϕ(o) θ(o) D(m) D(m) error (m)

1 a 0

20

5 5.01 0.01
1 b 50 5 5.01 0.01
1 c 90 7 6.92 0.08
1 d 120 7 6.92 0.08
1 e 180 3 3.01 0.01
1 f -40 3 3.01 0.01
1 g -90 10 9.52 0.48
1 h -140 10 9.44 0.56

2 a 0

60

5 5.01 0.01
2 b 50 5 5.01 0.01
2 c 90 7 6.92 0.08
2 d 120 7 6.92 0.08
2 e 180 3 3.01 0.01
2 f -40 3 3.01 0.01
2 g -90 10 9.48 0.52
2 h -140 10 9.43 0.57

3 a 50 0 5 5.01 0.01

3 b -120 4 7 6.89 0.11

4 a -40 86 5 5.01 0.01

4 b 150 89 7 6.90 0.10

0.6 m in both the case of speech as well as white noise

sound sources.

8 Experimental Results

Experiments were conducted using two different hard-
ware platforms: a KEMAR dummy head in a well equipped

hearing laboratory and a robotic platform equipped

with a set of two rotational microphones. The follow-
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Fig. 18 Simulation results for distance estimation using EKF.
A single sound source was placed at two different locations with
distances of 5 m and 10 m, respectively. The bounds represent
the three standard deviation of the estimation error.

ing subsections discuss the hardware platforms and the

results.

8.1 Results using KEMAR Dummy Head

Experiments using the KEMAR dummy head were con-

ducted in a high frequency focused sound treated room [53]

with dimension 4.6 m x 3.7 m x 2.7 m as shown in Fig-

ure 19. The ITD however is mostly effective for low
frequency sounds below 1.5 kHz as a spatial hearing

cue [35]. The walls, floor, and ceiling of the room were

covered by polyurethane acoustic foam with a thickness

of only 5 cm which is relatively low compared to the

sound wavelength thereby making a relatively low re-
duction in low and middle frequencies [6], thereby mak-

ing it a challenging acoustic environment. For broad

band noise, T60 (i.e., the time required for the sound

level to decay 60 dB [43]) was 97 ms. In an octave band
centered at 1000 Hz, T60 for the noise was on an aver-

age of 324 ms.

The digitally generated audio signals using a MAT-

LAB program and three 12-channel Digital-to-Analog

converters running at 44,100 cycles each second per

channel were amplified using AudioSource AMP 1200
amplifiers before they were played from an array of 36

loudspeakers. The two microphones were installed on

the KEMAR dummy head temporarily mounted on a

rotating chair which was rotated at an approximate rate

of 32°/s for about two circles in the middle of the room.
The data collected in the second rotation was used for

the EKF. Motion data was collected by the gyroscope

mounted on the top of the dummy head. The audio

signals were amplified and collected by a sound card
which were then stored on a desktop computer for fur-

ther processing. The ITD was processed with a gener-

alized cross-correlation model [30] in each time frame
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Fig. 19 Setup of the KEMAR dummy head on a rotating chair
in the middle of the sound treated room [46].

corresponding to the 120 Hz sampling rate of the gyro-

scope. The computation was completed by a MATLAB

program on a desktop computer. Raw data with a sin-
gle sound source located at four different locations were

collected.
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Fig. 20 Experimental results for orientation localization using
the KEMAR dummy head. When θ = 0o, the azimuth estimates
using the 2D and 3D models are very close (in the top-left fig-

ure), which implies the elevation estimates are not reliable (in the
bottom-left figure). When θ = 30o, the azimuth estimates are ob-
viously different (in the top-right figure), which implies reliable
elevation estimates using the 3D model (in the bottom-right fig-
ure).

The left two subfigures in Figure 20 are generated

when the actual elevation angle is 0o. It can be seen that

the azimuth estimations using the 2D and 3D models

are very close, which implies that the actual elevation
angle is close to 0o and the elevation estimation using

the 3D model is not reliable. The right two subfigures in

Figure 20 are generated when the actual elevation angle

is 30o. It can be seen that the azimuth estimations using
the 2D and 3D localization models are obviously differ-

ent while the elevation estimation using the 3D model

is fairly accurate, which verifies the proposed algorithm

shown in Figure 10. Table 7 shows the estimation re-

sults obtained using the 3D localization model. It can

be seen that the RMSE of the difference between the es-

timated azimuth values using respectively the 2D and

3D models works well in checking the zero elevation
condition.

8.2 Results using Robotic Platform

Experiments were also performed using a robotic plat-

form shown in Figure 21. In these experiments, two mi-
croelectromechanical systems (MEMS) analog/digital

microphones were used for recording the sound signal

coming from the sound source. Flex adapters were used

to hold the microphones. The angular speed of the rota-
tion of the microphone array was controlled by a bipolar

stepper motor with gear ratio adjusted to 0.9o per step.

The stepper motor was controlled by an Arduino micro-

processor. The distance between two microphones was

kept constant as 0.3 m. An audio (music) was played in
a loud speaker which was used as a sound source kept

at different locations. The estimation results are shown

in Figure 22 and Table 8.

MEMS Microphones

Microphone Evaluation Board

Arduino Board

Motor shield

Fig. 21 A two-microphone system is equipped on a ground
robot.

It can be seen that the azimuth estimations using

the 2D and 3D models shown in the top-left subfigure

in Figure 22 generated when the actual elevation angle
is 0o are very close, which implies that the elevation is

close to 0o and the elevation estimation shown in the

bottom-left subfigure in Figure 22 using the 3D localiza-

tion model is not reliable. However, the two subfigures

on the right in Figure 22 are generated by keeping the
sound source at an elevation angle of 55o. As proposed

in the algorithm shown in Figure 10, the azimuth esti-

mations using the 2D and 3D localization models are

different while the elevation estimation using the 3D
model is fairly accurate. Table 8 shows the estimation

results obtained using the 3D localization model. It can

be seen that the zero elevation condition can be checked
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Table 7 Experimental results using KEMAR dummy head: Orientation localization using the 3D model. (RMSE: difference between
azimuth estimations using the 2D and 3D models, respectively)

Expt. Act. Est. Avg of abs RMSE Act. Est. Avg of abs
No. ϕ(o) ϕ(o) error (o) (o) θ(o) θ(o) error (o)

1 90 91.21 1.21 1.39 0 13.64 13.64

2 -20 -21.53 1.53 1.16 0 48.14 48.14

3 90 90.40 0.40 79.94 60 59.05 0.95

Table 8 Experimental results using the robotic platform: Orientation localization using 3D model (RMSE: difference between azimuth
estimations using the 2D and 3D models, respectively)

Expt. Act. Est. Avg of abs RMSE Act. Est. Avg of abs
No. ϕ(o) ϕ(o) error (o) (o) θ(o) θ(o) error (o)

1 -140 -140.65 0.65 0.72 0 14.96 14.96

2 180 178.71 1.29 0.69 5 11.59 6.59

3 40 39.67 0.33 8.80 55 55.24 0.24

4 40 38.20 1.80 10.96 65 64.67 0.33

0 100 200 300 400

0

100

200

300

Number of samples

ϕ
(d
eg
)

2D and 3D model’s estimated ϕ comparison at θ = 55◦

 

 

2D model estimation
3D model estimation
Actual azimuth angle

0 100 200 300 400

−150

−100

−50

0

Number of samples

and 3D model’s estimated ϕ comparison at θ = 0◦

 

 

2D model estimation
3D model estimation
Actual azimuth angle

0 100 200 300 400
0

20

40

60

80

Number of samples

θ
(d
eg
)

Estimated elevation

 

 

Estimated elevation
Actual elevation

0 100 200 300 400
−10

0

10

20

30

40

50

Number of samples

Estimated elevation

 

 

Estimated elevation
Actual elevation

Fig. 22 Experimental results for orientation localization using
the robotic platform. When θ = 0o, the azimuth estimates using
the 2D and 3D models are very close (in the top-left figure), which
implies the elevation estimates are not reliable (in the bottom-
left figure). When θ = 55o, the azimuth estimates are obviously
different (in the top-right figure), which implies reliable elevation
estimates using the 3D model (in the bottom-right figure).

using the RMSE of the difference between the estimated

azimuth values using respectively the 2D and 3D mod-
els.

A fitted curve similar to one shown in the Figure 9
can be generated for the environment by keeping the

sound source at different elevation angles and recording

the RMSE values between ϕ2D and ϕ3D estimations.

The value of the parameter RMSEthreshold can be de-

cided, which can be used to check the θ = 0o scenario.
Further, the generated fitted curve can be used to give

a closer estimation of the elevation angle.

9 Conclusion

This paper presents a novel technique that performs

a complete localization (i.e., both orientation and dis-

tance) of a stationary sound source in a three-dimensional

(3D) space. Two singular conditions when unreliable

orientation localization (the elevation angle equals 0
or 90o) occurs were found by using the observability

theory. The root-mean-squared error (RMSE) value of

the difference between the azimuth estimates using re-

spectively the 2D and 3D models was used to check
the 0o elevation condition and the elevation was fur-

ther estimated using a polynomial curve fitting tech-

nique. The 90o elevation was detected by checking zero-

ITD signal. Based on an accurate orientation localiza-
tion, the distance localization was done by first rotating

the microphone array to face toward the sound source

and then shifting the microphones perpendicular to the

source-robot vector by a distance of a fixed number

of steps. Under challenging acoustic environments with
relatively low-energy targets and high-energy noise, high

localization accuracy was achieved in both simulations

and experiments. The mean of the average of absolute

estimation error was less than 4o for angular localiza-
tion and less than 0.6 m for distance localization in

simulation results and techniques to detect θ = 0o and

90o are verified in both simulation and experimental

results.
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