Skip to main content
Log in

Dynamically Reconfigurable Systems: A Systematic Literature Review

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Reconfigurable systems have evolved as a more comprehensive and better known area in the last years. Reconfigurability is strictly related to the ability to change: the more flexible a system is, the greater is its reconfigurability. Reconfiguration can provide the systems characteristics as self-adaptation, allowing their resources to be used according to the environment in which they are found and, consequently, extracting a better use of these resources. Unmanned Aerial Vehicles (UAVs), mine hoists, mobile robots, and balloon systems are some applications where self-adaptation and reconfiguration are important. Some reconfigurable systems are able to plan their reconfiguration at runtime, i.e., the system sets its new configuration while running. These systems are called Dynamically Reconfigurable Systems (DRSs). This paper aims to investigate DRSs seeking to answer four specific questions: (i) how the different kinds of DRSs are classified in the literature and what is their definitions; (ii) what are the hardware and software platforms, methodologies and techniques engaged in DRSs; (iii) what are the domains of application of DRSs; and, (iv) which countries lead the number of publications in DRSs. To do that, a systematic literature review was conducted, where, at the end, 85 articles between 1995 and 2017 were completely read.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mendeley: Available at https://www.mendeley.com (2017)

  2. Start: Available at http://lapes.dc.ufscar.br/tools/start_tool (2017)

  3. Abnous, R., Zeng, C., Chowdhury, S.: Dynamics and control design of a blended wing-body transitioning UAV. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2017 (June), 5–9. https://doi.org/10.2514/6.2017-4150 (2017)

  4. Aksit, M., Choukair, Z.: Dynamic, Adaptive and Reconfigurable Systems Overview and Prospective Vision. In: 23Rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings., 84–89. IEEE. https://doi.org/10.1109/ICDCSW.2003.1203537 (2003)

  5. Ansh Yadav, R., Deb, D., Ray, A.: Multi-Purpose Auto-Programmable Reconfigurable Embedded System Architecture. In: 2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV), 48–51. IEEE. https://doi.org/10.1109/EDCAV.2015.7060537 (2015)

  6. Anthony, R., Rettberg, A., Chen, D., Jahnich, I., de Boer, G., Ekelin, C.: A dynamically reconfigurable automotive control system architecture. IFAC Proceedings 41(2), 9308–9313 (2008). https://doi.org/10.3182/20080706-5-KR-1001.01573

    Article  Google Scholar 

  7. Ashjaei, M., Pedreiras, P., Behnam, M., Almeida, L., Nolte, T.: Dynamic reconfiguration in multi-hop switched ethernet networks. ACM SIGBED Rev. 11(3), 62–65 (2014). https://doi.org/10.1145/2692385.2692397

    Article  Google Scholar 

  8. Astarloa, A., Lázaro, J., Bidarte, U., Jiménez, J., Zuloaga, A.: FPGA Technology for multi-axis control systems. Mech. 19(2), 258–268 (2009). https://doi.org/10.1016/j.mechatronics.2008.09.001

    Google Scholar 

  9. Astarloa, A., Zuloaga, A., Bidarte, U., Martín, J. L., Lázaro, J., Jiménez, J.: Tornado: A self-reconfiguration control system for core-based multiprocessor CSoPCs. J. Syst. Archit. 53(9), 629–643 (2007). https://doi.org/10.1016/j.sysarc.2007.01.011

    Article  Google Scholar 

  10. Bapty, T., Neema, S., Scott, J., Sztipanovits, J., Asaad, S.: Model-integrated Tools for the Design of Dynamically Reconfigurable Systems. VLSI Design 10(3), 281–306 (2000). https://doi.org/10.1155/2000/74708

    Article  Google Scholar 

  11. Bieber, P., Noulard, E., Pagetti, C., Planche, T., Vialard, F.: Preliminary design of future reconfigurable IMA platforms. SIGBED Rev. 6(3), 7:1–7:5 (2009). https://doi.org/10.1145/1851340.1851349

    Article  Google Scholar 

  12. Bobda, C.: Introduction to Reconfigurable Computing. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-6100-4

    Book  MATH  Google Scholar 

  13. Borde, E., Feiler, P.H., Haïk, G., Pautet, L.: Model driven code generation for critical and adaptative embedded systems. ACM SIGBED Rev. 6(3), 1 (2009). https://doi.org/10.1145/1851340.1851352

    Article  Google Scholar 

  14. Brunelli, C., Garzia, F., Rossi, D., Nurmi, J.: A coarse-grain reconfigurable architecture for multimedia applications supporting subword and floating-point calculations. J. Syst. Archit. 56(1), 38–47 (2010). https://doi.org/10.1016/j.sysarc.2009.11.003

    Article  Google Scholar 

  15. Cancare, F., Pilato, C., Cazzaniga, A., Sciuto, D., Santambrogio, M.D.: D-RECS: A Complete Methodology to Implement Self Dynamic Reconfigurable FPGA-Based Systems. In: 2013 8Th International Workshop on Reconfigurable and Communication-Centric Systems-On-Chip (Recosoc), 1–6. IEEE. https://doi.org/10.1109/ReCoSoC.2013.6581550 (2013)

  16. Cantó, E., Fons, M., Fons, F., López, M., Ramos, R.: Fast self-reconfigurable embedded system on Spartan-3. J. Univ. Comput. Sci. 19(3), 301–324 (2013). https://doi.org/10.3217/jucs-019-03-0301

    Google Scholar 

  17. Cho, Y.H.: Automatic Target Recognition Systems on Reconfigurable Devices. In: Reconfigurable Computing, 591–612. Elsevier. https://doi.org/10.1016/B978-012370522-8.50037-6 (2008)

  18. Chowdhury, S., Maldonado, V., Patel, R.: Conceptual Design of a Multi-Ability Reconfigurable Unmanned Aerial Vehicle (UAV) through a Synergy of 3D CAD and Modular Platform Planning. In: AIAA AVIATION 2014 - 15Th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, June, 16–20. https://doi.org/10.2514/6.2014-2178 (2014)

  19. Chowdhury, S., Maldonado, V., Tong, W., Messac, A.: New modular Product-Platform-Planning approach to design macroscale reconfigurable unmanned aerial vehicles. J. Aircr. 53(2), 309–322 (2016). https://doi.org/10.2514/1.C033262

    Article  Google Scholar 

  20. Claus, C., Stechele, W.: Autovision—Reconfigurable Hardware Acceleration for Video-Based Driver Assistance. In: Platzner, M., Teich, J., Wehn, N. (eds.) Dynamically Reconfigurable Systems, pp. 375–394. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-3485-4_18

  21. Compton, K., DeHon, A.: Operating system support for reconfigurable computing. Reconfigurable Computing, 231–254. https://doi.org/10.1016/B978-012370522-8.50016-9 (2008)

  22. Costa, C., Ali, N., Perez, J., Carsi, J.A., Ramos, I.: Dynamic reconfiguration of software architectures through aspects. Lect. Notes Comput. Sci 4758, 279–283 (2007). https://doi.org/10.1007/978-3-540-75132-8_24

    Article  Google Scholar 

  23. Diessel, O.: Opportunities and challenges for dynamic FPGA reconfiguration in electronic measurement and instrumentation. https://doi.org/10.1109/ICEMI.2013.6743028 (2013)

  24. Diguet, J.P., Eustache, Y., Gogniat, G.: Closed-loop–based Self-adaptive Hardware/Software-Embedded Systems: Design Methodology and Smart Cam Case Study. ACM Trans. Embed. Comput. Syst. 10(3), 38:1–38:28 (2011). https://doi.org/10.1145/1952522.1952531

    Article  Google Scholar 

  25. Estrin, G.: Reconfigurable computer origins: the UCLA fixed-plus-variable (F+V) structure computer. IEEE Ann. Hist. Comput. 24(4), 3–9 (2002). https://doi.org/10.1109/MAHC.2002.1114865

    Article  MathSciNet  Google Scholar 

  26. Ferguson, S., Siddiqi, A., Lewis, K., de Weck, O.L.: Flexible and Reconfigurable Systems: Nomenclature and Review. In: International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (2007)

  27. Ferreira, R., Laure, M., Beck, A.C., Lo, T., Rutzig, M., Carro, L.: A low cost and adaptable routing network for reconfigurable systems IPDPS 2009. In: Proceedings of the 2009 IEEE International Parallel and Distributed Processing Symposium. https://doi.org/10.1109/IPDPS.2009.5161217 (2009)

  28. Fleischmann, J., Buchenrieder, K., Kress, R.: A hardware/software prototyping environment for dynamically reconfigurable embedded systems. In: Proceedings of the Sixth International Workshop on Hardware/Software Codesign. (CODES/CASHE’98), CODES/CASHE ’98, pp. 105–109. IEEE Comput. Soc, Washington (1998). https://doi.org/10.1109/HSC.1998.666246

  29. Gadfort, P., Dasu, A., Akoglu, A., Leow, Y.K., Fritze, M.: A power efficient reconfigurable system-in-stack: 3D integration of accelerators, FPGAs, and DRAM. In: International System on Chip Conference, 11–16. https://doi.org/10.1109/SOCC.2014.6948892 (2014)

  30. Gonzalez, I., Aguayo, E., Lopez-Buedo, S.: Self-reconfigurable Embedded Systems on Low-Cost FPGAs. IEEE Micro 27(4), 49–57 (2007). https://doi.org/10.1109/MM.2007.72

    Article  Google Scholar 

  31. Götz, M., Dittmann, F., Xie, T.: Dynamic relocation of hybrid tasks: Strategies and methodologies. Microprocess. Microsyst. 33(1), 81–90 (2009). https://doi.org/10.1016/j.micpro.2008.08.001

    Article  Google Scholar 

  32. Harb, N., Niar, S., Khan, J., Saghir, M.A.R.: A reconfigurable platform architecture for an automotive multiple-target tracking system. ACM SIGBED Rev. 6(3), 1 (2009). https://doi.org/10.1145/1851340.1851355

    Article  Google Scholar 

  33. Heredia, G., Duran, A., Ollero, A.: Modeling and simulation of the HADA reconfigurable UAV. J. Intell. Robot. Syst.: Theory and Appl. 65(1-4), 115–122 (2012). https://doi.org/10.1007/s10846-011-9561-9

    Article  Google Scholar 

  34. Holland, M., Moore, B., Ferguson, S.: Transforming for Stability and Aerodynamic Performance in a Reconfigurable UAV. In: 12Th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14Th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, September, pp. 1–20. American Institute of Aeronautics and Astronautics, Reston (2012). https://doi.org/10.2514/6.2012-5530

  35. Jamshidi, P., Ghafari, M., Ahmad, A., Pahl, C.: A Protocol for Systematic Literature Review on Architecture - Centric Software Evolution Research. Tech. rep., The Irish Software Engineering Research Centre (2012)

  36. Janakiraman, N., Nirmalkumar, P., Akram, S.M.: Coarse grained ADRES based MIMO-OFDM transceiver with new radix-25 pipeline FFT/IFFT processor. Circuits, Systems, and Signal Processing 34 (3), 851–873 (2015). https://doi.org/10.1007/s00034-014-9880-8

    Article  Google Scholar 

  37. Jozwiak, L., Nedjah, N.: Modern architectures for embedded reconfigurable systems a survey. J. of Circuits Syst. and Comput. 18(02), 209–254 (2009). https://doi.org/10.1142/S0218126609005034

    Article  Google Scholar 

  38. Jóźwiak, L., Nedjah, N., Figueroa, M.: Modern development methods and tools for embedded reconfigurable systems: a survey. Integr. VLSI J. 43(1), 1–33 (2010). https://doi.org/10.1016/j.vlsi.2009.06.002

    Article  Google Scholar 

  39. Kachris, C., Wong, S., Vassiliadis, S.: Design and performance evaluation of an adaptive FPGA for network applications. Microelectron. J. 40(7), 1103–1110 (2009). https://doi.org/10.1016/j.mejo.2008.05.011

    Article  Google Scholar 

  40. Kalinowski, T., Thor, M., Tudruj, M.: Multi-transputer systems with dynamic reconfiguration control based on the serial bus. Comput. Syst. Eng. 6(4-5), 391–400 (1995). https://doi.org/10.1016/0956-0521(95)00031-3

    Article  Google Scholar 

  41. Kanellakis, C., Nikolakopoulos, G.: Survey on Computer Vision for UAVs: Current Developments and Trends. J. Intell. Robot. Syst. 1–28. https://doi.org/10.1007/s10846-017-0483-z (2017)

  42. Kay, M.S., Iaione, F.: Reconfigurable Embedded System for ECG Signal Acquisition. In: 2015 IEEE 28Th International Symposium on Computer-Based Medical Systems, V, 25–26. IEEE. https://doi.org/10.1109/CBMS.2015.58 (2015)

  43. Kessal, L., Abel, N., Demigny, D.: Real-time image processing with dynamically reconfigurable architecture. Real-Time Imaging 9(5), 297–313 (2003). https://doi.org/10.1016/j.rti.2003.07.001

    Article  Google Scholar 

  44. Khalgui, M., Mosbahi, O.: Intelligent distributed control systems. Inf. Softw. Technol. 52(12), 1259–1271 (2010). https://doi.org/10.1016/j.infsof.2010.06.001

    Article  Google Scholar 

  45. Kitamichi, J., Ueda, K., Kurod, K.: A Modeling of a Dynamically Reconfigurable Processor Using SystemC. In: 21St International Conference on VLSI Design (VLSID 2008), 91–96. IEEE. https://doi.org/10.1109/VLSI.2008.13 (2008)

  46. Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK Keele University (2004)

  47. Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic literature reviews in software engineering - a systematic literature review. Inf. Softw. Technol. 51(1), 7–15 (2009). https://doi.org/10.1016/j.infsof.2008.09.009

    Article  Google Scholar 

  48. Kriesten, D., Pankalla, V., Heinkel, U.: An Application Example of a Run-Time Reconfigurable Embedded System. In: 2010 International Conference on Reconfigurable Computing and FPGAs, 97–102. IEEE. https://doi.org/10.1109/ReConFig.2010.53 (2010)

  49. Krupitzer, C., Roth, F.M., Vansyckel, S., Schiele, G., Becker, C.: A survey on engineering approaches for self-adaptive systems. Pervasive Mob. Comput. 17(PB), 184–206 (2015). https://doi.org/10.1016/j.pmcj.2014.09.009

    Article  Google Scholar 

  50. Kuehnle, M., Britoy, A., Roth, C., Dagas, K., Becker, J.: The study of A Dynamic Reconfiguration Manager for Systems-on-Chip. In: Proceedings - 2011 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2011 13–18. https://doi.org/10.1109/ISVLSI.2011.35 (2011)

  51. Li, L., Lin, C.J., Huang, M.L., Kuo, S.C., Chen, Y.R.: Mobile robot navigation control using recurrent fuzzy cerebellar model articulation controller based on improved dynamic artificial bee colony. Adv. Mech. Eng. 8(11), 1687814016681,234 (2016). https://doi.org/10.1177/1687814016681234

    Google Scholar 

  52. Lizarraga, M.I., Elkaim, G.H., Horn, G.M., Curry, R., Dobrokhodov, V., Kaminer, I.: Low Cost Rapidly Reconfigurable UAV Autopilot for Research and Development of Guidance, Navigation and Control Algorithms. In: Volume 3: ASME/IEEE 2009 International Conference on Mechatronic and Embedded Systems and Applications; 20Th Reliability, Stress Analysis, and Failure Prevention Conference, July 2015, 585–594. ASME. https://doi.org/10.1115/DETC2009-86547 (2009)

  53. Lou, G.H., Chen, C.: Design of the Intelligent Control System for Mine Hoist. In: Mechanical Engineering, Industrial Electronics and Information Technology Applications in Industry, Applied Mechanics and Materials, 427,957–960. Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMM.427-429.957 (2013)

  54. Lyke, J.C., Christodoulou, C.G., Vera, G.A., Edwards, A.H.: An introduction to reconfigurable systems. Proc. IEEE 103(3), 291–317 (2015). https://doi.org/10.1109/JPROC.2015.2397832

    Article  Google Scholar 

  55. Maldonado, V., Sarker, P., Chowdhury, S.: A Modular Design Approach to a Reconfigurable Unmanned Aerial Vehicle. In: AIAA Information Systems-AIAA Infotech @ Aerospace, January, pp. 1–12. American Institute of Aeronautics and Astronautics, Reston (2017). https://doi.org/10.2514/6.2017-0224

  56. Martins, L.E.G., Gorschek, T.: Requirements engineering for safety-critical systems: a systematic literature review. Inf. Softw. Technol. 75, 71–89 (2016). https://doi.org/10.1016/j.infsof.2016.04.002

    Article  Google Scholar 

  57. McGee, E.T., McGregor, J.D.: Using dynamic adaptive systems in safety-critical domains. In: Proceedings of the 11th International Workshop on Software Engineering for Adaptive and Self-Managing Systems - SEAMS ’16, pp. 115–121. ACM Press, New York (2016). https://doi.org/10.1145/2897053.2897062

  58. Mehra, S., Majithia, J.: Reconfigurable computer architectures. IEE Proceedings E - Comput. Digit. Tech. 4(129), 156–164 (1982). https://doi.org/10.1049/IP-E:19820032

    Article  Google Scholar 

  59. Mei, B., Berekovic, M., Mignolet, J.Y.: ADRES Andamp; DRESC: Architecture and Compiler for Coarse-Grain Reconfigurable Processors. In: Fine- and Coarse-Grain Reconfigurable Computing, pp. 255–297. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-6505-7_6

  60. Möller, L., Soares, R., Carvalho, E., Grehs, I., Calazans, N., Moraes, F.: Infrastructure for Dynamic Reconfigurable Systems: Choices and Trade-offs. In: Proceedings of the 19th Annual Symposium on Integrated Circuits and Systems Design, SBCCI ’06, pp. 44–49. ACM, New York (2006). https://doi.org/10.1145/1150343.1150360

  61. Nam, H., Lysecky, R.: Latency, Power, and Security Optimization in Distributed Reconfigurable Embedded Systems. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops, 124–131. https://doi.org/10.1109/IPDPSW.2016.40 (2016)

  62. Ogata, K.: Modern control engineering. Englewood Cliffs N.J : Prentice-hall (1970)

  63. Osterloh, B., Michalik, H., Fiethe, B.: SoCWire: A robust and fault tolerant network-on-chip approach for a dynamic reconfigurable System-on-Chip in FPGAs. Lect. Notes Comput. Sci 5455(i), 50–59 (2009). https://doi.org/10.1007/978-3-642-00454-4_8

    Article  Google Scholar 

  64. Palumbo, F., Sau, C., Raffo, L.: Power-Awarness in Coarse-Grained Reconfigurable Designs: a Dataflow Based Strategy. In: 2014 IEEE Workshop on Signal Processing Systems (SiPS), 1–6. IEEE. https://doi.org/10.1109/SiPS.2014.6986104 (2014)

  65. Pan, Z., Wells, B.E.: Hardware supported task scheduling on dynamically reconfigurable SoC architectures. IEEE Trans. Very Large Scale Integr. VLSI Syst. 16(11), 1465–1474 (2008). https://doi.org/10.1109/TVLSI.2008.2000974

    Article  Google Scholar 

  66. Pate, D.J., Patterson, M.D., German, B.J.: Optimizing families of reconfigurable aircraft for multiple missions. J. Aircr. 49(6), 1988–2000 (2012). https://doi.org/10.2514/1.C031667

    Article  Google Scholar 

  67. Pellizzoni, R., Caccamo, M.: Hybrid hardware-software architecture for reconfigurable real-time systems. In: Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS, 273–284. https://doi.org/10.1109/RTAS.2008.14 (2008)

  68. Peper, C., Schneider, D.: Component engineering for adaptive ad-hoc systems. In: Proceedings of the 2008 international workshop on Software engineering for adaptive and self-managing systems - SEAMS ’08, SEAMS ’08, p. 49. ACM Press, New York (2008). https://doi.org/10.1145/1370018.1370028

  69. Perera, D.G.: Analysis of FPGA-based Reconfiguration Methods for Mobile and Embedded Applications. In: Proceedings of the 12th FPGAworld Conference 2015 on - FPGAworld ’15, pp. 15–20. ACM Press, New York (2015). https://doi.org/10.1145/2889287.2889297

  70. Podolski, I., Rettberg, A.: Towards a Self-Configurable middleware for production control systems with wireless sensor networks. IFAC Proceedings 42(4), 414–419 (2009). https://doi.org/10.3182/20090603-3-RU-2001.0433

    Article  Google Scholar 

  71. Pu, H., Zhen, Z., Jiang, J., Wang, D.: Uav flight control system based on an intelligent bel algorithm. Int. J. Adv. Robot. Syst. 10(2), 121 (2013). https://doi.org/10.5772/53746

    Article  Google Scholar 

  72. Raffo, M., Gomes Filho, J., Strum, M., Chau, W.J.: A Placement Tool for a NOC-Based Dynamically Reconfigurable System. In: 2010 VI Southern Programmable Logic Conference (SPL), 47–52. IEEE. https://doi.org/10.1109/SPL.2010.5483005 (2010)

  73. Rana, V., Santambrogio, M.: Dynamic reconfigurability in embedded system design. Circuits and Syst. 2007, 2734–2737 (2007). https://doi.org/10.1109/ISCAS.2007.378618

    Google Scholar 

  74. Rodriguez-Andina, J., Moure, M., Valdes, M.: Features, Design Tools, and Application Domains of FPGAs. IEEE Trans. Ind. Electron. 54(4), 1810–1823 (2007). https://doi.org/10.1109/TIE.2007.898279

    Article  Google Scholar 

  75. Sanchez-Elez, M., Fernandez, M., Bagherzadeh, N., Hermida, R., Kurdahi, F., Maestre, R.: A coarse-grain dynamically reconfigurable system and compilation framework. Fine-and Coarse-Grain Reconfigurable Computing, 181–215. https://doi.org/10.1007/978-1-4020-6505-7_4 (2008)

  76. Santambrogio, M.D., Rana, V., Sciuto, D.: Operating System Support for Online Partial Dynamic Reconfiguration Management. In: 2008 International Conference on Field Programmable Logic and Applications, 455–458. IEEE. https://doi.org/10.1109/FPL.2008.4629982 (2008)

  77. Shoa, A., Shirani, S.: Run-Time Reconfigurable systems for digital signal processing applications : a survey. J. VLSI Sig. Proc. 39(3), 213–235 (2005). https://doi.org/10.1007/s11265-005-4841-x

    Article  Google Scholar 

  78. Sirowy, S., Huang, C., Vahid, F.: Dynamic acceleration management for SystemC emulation. ACM SIGBED Rev. 6(3), 1 (2009). https://doi.org/10.1145/1851340.1851345

    Article  Google Scholar 

  79. Suvorova, E., Matveeva, N., Rabin, A., Rozanov, V.: System Level Modeling of Dynamic Reconfigurable System-On-Chip. In: 2015 17Th Conference of Open Innovations Association (FRUCT), 222–229. IEEE. https://doi.org/10.1109/FRUCT.2015.7117996 (2015)

  80. Taghipour, H., Frounchi, J., Zarifi, M.H.: Design and implementation of MP3 decoder using partial dynamic reconfiguration on virtex-4 FPGAs. In: Proceedings of the International Conference on Computer and Communication Engineering 2008, ICCCE08: Global Links for Human Development, 683–686. https://doi.org/10.1109/ICCCE.2008.4580691 (2008)

  81. Tehre, V., Kshirsagar, R.: Survey on coarse grained reconfigurable architectures. Int. J. Comput. Appl. 48(16), 1–7 (2012). https://doi.org/10.5120/7429-0104

    Google Scholar 

  82. Tessier, R., Burleson, W.: Reconfigurable computing for digital signal processing: a survey. J. VLSI Sig. Proc. 28(1), 7–27 (2001). https://doi.org/10.1023/A:1008155020711

    Article  MATH  Google Scholar 

  83. Tianfield, H., Unland, R.: Towards autonomic computing systems. Eng. Appl. Artif. Intel. 17(7), 689–699 (2004). https://doi.org/10.1016/j.engappai.2004.08.029

    Article  Google Scholar 

  84. Ullmann, M., Becker, J.: Communication concept for adaptive intelligent run-time systems supporting distributed reconfigurable embedded systems. In: Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, IPDPS’06, p. 8 IEEE. https://doi.org/10.1109/IPDPS.2006.1639442 (2006)

  85. Voss, P.B., Hole, L.R., Helbling, E.F., Roberts, T.J.: Continuous in-situ soundings in the arctic boundary layer: a new atmospheric measurement technique using controlled meteorological balloons. J. Intell. Robot. Syst. 70(1), 609–617 (2013). https://doi.org/10.1007/s10846-012-9758-6

    Google Scholar 

  86. Wagner, M., Zöbel, D., Meroth, A.: Re-configuration in SOA-based Adaptive Driver Assistance Systems. SIGBED Rev. 11(3), 30–35 (2014). https://doi.org/10.1145/2692385.2692390

    Article  Google Scholar 

  87. Walsh, A., Bordeleau, F., Selic, B., Lionel Briand D., Walsh, C.J., Bordeleau, F., Selic, B.: Domain analysis of dynamic system reconfiguration. Softw. Syst. Model 6, 355–380 (2007). https://doi.org/10.1007/s10270-006-0038-4

    Article  Google Scholar 

  88. Wang, L., Ding, C., Wen, D., Jiang, Y.: A high-performance, low-area reconfiguration controller for network-on-chip-based partial dynamically reconfigurable system-on-chip designs. Int. J. Electron. 97(10), 1207–1225 (2010). https://doi.org/10.1080/00207217.2010.512019

    Article  Google Scholar 

  89. Wang, X.W., Chen, W.N., Peng, C.L., You, H.J.: Hardware-software monitoring techniques for dynamic partial reconfigurable embedded systems. In: Proceedings - The 2008 International Conference on Embedded Software and Systems Symposia, ICESS Symposia, 113–119. https://doi.org/10.1109/ICESS.Symposia.2008.10 (2008)

  90. Wang, X.W., Chen, W.N., Wang, Y., Peng, C.L.: A Co-design Flow for Reconfigurable Embedded Computing System with RTOS Support. In: 2009 International Conference on Embedded Software and Systems, 467–474. IEEE. https://doi.org/10.1109/ICESS.2009.84 (2009)

  91. Wang, X.W., Chen, W.N., Wang, Y., You, H.J., Peng, C.L.: The design and implementation of hardware task configuration management unit on dynamically reconfigurable SoC. In: Proceedings - 2009 International Conference on Embedded Software and Systems, ICESS, 2009,179–184. https://doi.org/10.1109/ICESS.2009.83 (2009)

  92. Wu, H.H., Shen, C.C., Kee, H., Sane, N., Plishker, W., Bhattacharyya, S.S.: Mapping Parameterized Dataflow Graphs onto FPGA Platforms. In: Academic Press Library in Signal Processing: Volume 4 Image, Video Processing and Analysis, Hardware, Audio, Acoustic and Speech Processing, 4,643–673. Elsevier Masson SAS. https://doi.org/10.1016/B978-0-12-396501-1.00024-8 (2014)

  93. Wu, K., Madsen, J.: COSMOS: A System-level modelling and simulation framework for coprocessor-coupled reconfigurable systems. In: Proceedings - 2007 International Conference on Embedded Computer Systems: architectures, Modeling and Simulation, IC-SAMOS, 2007,128–136. https://doi.org/10.1109/ICSAMOS.2007.4285743 (2007)

  94. Wzorek, M., Doherty, P.: Reconfigurable Path Planning for an Autonomous Unmanned Aerial Vehicle. In: 2006 International Conference on Hybrid Information Technology, 2,242–249. IEEE. https://doi.org/10.1109/ICHIT.2006.253618 (2006)

  95. Zalke, J.B., Pandey, S.K.: Dynamic partial reconfigurable embedded system to achieve hardware flexibility using 8051 based RTOS on Xilinx FPGA. In: ACT 2009 - International Conference on Advances in Computing, Control and Telecommunication Technologies, 684–686. https://doi.org/10.1109/ACT.2009.174 (2009)

  96. Zamboni, A., Di Thommazo, A., Hernandes, E., Fabbri, S.: Start Uma Ferramenta Computacional De Apoio à Revisão Sistemática. In: Proceedings: Congresso Brasileiro De Software (CBSoft’10), Salvador, Brazil (2010)

  97. Zeller, M., Prehofer, C., Krefft, D., Weiss, G.: Towards runtime adaptation in AUTOSAR. SIGBED Rev. 10(4), 17–20 (2013). https://doi.org/10.1145/2583687.2583691

    Article  Google Scholar 

  98. Zhang, X., Ng, K.W.: Review of high-level synthesis for Dynamically Reconfigurable FPGAs. Microprocess. Microsyst. 24(4), 199–211 (2000). https://doi.org/10.1016/S0141-9331(00)00074-0

    Article  Google Scholar 

  99. Zhang, X., Rabah, H., Weber, S.: An Auto-adaptation Method for Dynamically Reconfigurable System-on-Chip. In: 2008 IEEE Computer Society Annual Symposium on VLSI, 499–502. IEEE. https://doi.org/10.1109/ISVLSI.2008.79 (2008)

  100. Zong, C., Mondal, S., Hall, D.A., Jafari, R.: Digitally Assisted Analog Front-end Power Management Strategy via Dynamic Reconfigurability for Robust Heart Rate Monitoring. SIGBED Rev. 12(3), 36–39 (2015). https://doi.org/10.1145/2815482.2815489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Fornari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornari, G., de Santiago Júnior, V.A. Dynamically Reconfigurable Systems: A Systematic Literature Review. J Intell Robot Syst 95, 829–849 (2019). https://doi.org/10.1007/s10846-018-0921-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0921-6

Keywords

Navigation