Skip to main content
Log in

Constrained Kinematic Control in Minimally Invasive Robotic Surgery Subject to Remote Center of Motion Constraint

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents kinematic control of surgical robotic systems subject to Remote Center of Motion (RCM) constraint in Minimally Invasive Robotic Surgeries (MIRS). A novel kinematic formulation for surgical systems is derived and the movement restriction in incision point, known as RCM constraint, is resolved by active control of the system through a so-called RCM-constrained Jacobian. The proposed minimal Jacobian matrix can realize fixed/moving trocar constraint effectively in comparison with the state-of-the-arts. In the following, an analysis related to the dexterity of the constrained system is introduced and an index for manipulability of the constrained system is introduced. The proposed approach is validated through several numerical simulations as well as experiments in a 7DoFs and 9DoFs MIRS scenarios. The results show the efficiency and the precision of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghakhani, N., Geravand, M., Shahriari, N., Vendittelli, M., Oriolo, G.: Task control with remote center of motion constraint for minimally invasive robotic surgery. In: International Conference on Robotics and Automation (ICRA), 2013 IEEE, pp. 5807–5812 (2013)

  2. Azimian, H., Patel, R.V., Naish, M.D.: On constrained manipulation in robotics-assisted minimally invasive surgery. In: 3rd International Conference on Biomedical Robotics and Biomechatronics (Biorob), 2010 IEEE RAS and EMBS, pp. 650–655 (2010)

  3. Boctor, E.M., Webster III, R.J., Mathieu, H., Okamura, A.M., Fichtinger, G.: Virtual remote center of motion control for needle placement robots. Comput. Aided Surg. 9(5), 175–183 (2004)

    Google Scholar 

  4. Dalvand, M.M., Shirinzadeh, B.: Remote centre-of-motion control algorithms of 6-Rrcrr parallel robot assisted surgery system (Pramiss). In: International Conference on Robotics and Automation (ICRA), 2012 IEEE, pp. 3401–3406 (2012)

  5. Dalvand, M.M., Shirinzadeh, B.: Motion control analysis of a parallel robot assisted minimally invasive surgery/microsurgery system (pramiss). Robot. Comput. Integr. Manuf. 29(2), 318–327 (2013)

    Article  Google Scholar 

  6. Davies, B.L., Hibberd, R.D., Timoney, A.G., Wickham, J.E.A.: A clinically applied robot for prostatectomies. In: Taylor, R.H., Lavealle, S., Burdea, G.C., & Mosges, R. (eds.) Computer-Integrated Surgery: Technology and Clinical Applications, pp. 593–601. MIT Press (1996)

  7. From, P.J.: On the kinematics of robotic-assisted minimally invasive surgery. Model Identif Control 34(2), 69 (2013)

    Article  Google Scholar 

  8. Funda, J., Taylor, R.H., Eldridge, B., Gomory, S., Gruben, K.G.: Constrained cartesian motion control for teleoperated surgical robots. IEEE Trans. Robot. Autom. 12 (3), 453–465 (1996)

    Article  Google Scholar 

  9. Ghodoussi, M., Butner, S.E., Wang, Y.: Robotic surgery-the transatlantic case. In: International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE Vol. 2, pp. 1882–1888 (2002)

  10. Hadavand, M., Mirbagheri, A., Behzadipour, S., Farahmand, F.: A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems. Int. J. Med. Robot. Comput. Assisted Surgery 10 (2), 129–139 (2014)

    Article  Google Scholar 

  11. Hagn, U., Nickl, M., Jörg, S., Passig, G., Bahls, T., Nothhelfer, A., Hacker, F., Le-Tien, L., Albu-Schäffer, A., Konietschke, R., et al.: The dlr miro: a versatile lightweight robot for surgical applications. Ind. Robot: Int. J. 35(4), 324–336 (2008)

    Article  Google Scholar 

  12. Hata, N., Hashimoto, R., Tokuda, J., Morikawa, S.: Needle guiding robot for mr-guided microwave thermotherapy of liver tumor using motorized remote-center-of-motion constraint. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005. IEEE, pp. 1652–1656 (2005)

  13. Hata, N., Masamune, K., Kobayashi, E., Suzuki, M., Dohi, T., Iseki, H., Takahura, K.: Needle insertion manipulator for ct-and mr-guided stereotactic neurosurgery. Interventional MR: Techniques and Clinical Experience, pp 99–106. Mosby, St. Louis (1998)

    Google Scholar 

  14. Jensen, P.S., Grace, K.W., Attariwala, R., Colgate, J.E., Glucksberg, M.R.: Toward robot-assisted vascular microsurgery in the retina. Graefe’s Arch. Clinical Exp. Ophthalmol. 235(11), 696–701 (1997)

    Article  Google Scholar 

  15. Konietschke, R., Ortmaier, T., Weiss, H., Hirzinger, G., Engelke, R.: Manipulability and accuracy measures for a medical robot in minimally invasive surgery. In: On Advances in Robot Kinematics. Springer, pp. 191–198 (2004)

  16. Kuo, C.H., Dai, J.S.: Robotics for minimally invasive Surgery: a historical review from the perspective of kinematics. In: International Symposium on History of Machines and Mechanisms. Springer, pp. 337–354 (2009)

  17. Li, M., Kapoor, A., Taylor, R.H.: A constrained optimization approach to virtual fixtures. In: International Conference on Intel- ligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ, pp. 1408–1413 (2005)

  18. Li, M., Taylor, R.H.: Performance of surgical robots with automatically generated spatial virtual fixtures. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005. IEEE, pp. 217–222 (2005)

  19. Locke, R.C., Patel, R.V.: Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery. In: International Conference on Robotics and Automation, 2007. IEEE, pp. 1900–1905 (2007)

  20. Lohmann, M., Konietschke, R., Hellings, A., Borst, C., Hirzinger, G.: A workspace analysis method to support intraoperative trocar placement in minimally invasive robotic surgery (mirs) (2012)

  21. Marinho, M.M., Bernardes, M.C., Bó, A.P.: A programmable remote center-of-motion controller for minimally invasive surgery using the dual quaternion framework. In: International Conference on Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS & EMBS), pp. 339–344 (2014)

  22. Mayer, H., Nagy, I., Knoll, A.: Kinematics and modelling of a system for robotic surgery. In: On Advances in Robot Kinematics. Springer, pp. 181–190 (2004)

  23. Morley, T.A., Wallace, D.T.: Roll-pitch-roll surgical tool. US Patent 6,902,560 (2005)

  24. Pham, C.D., Coutinho, F., Leite, A.C., Lizarralde, F., From, P.J., Johansson, R.: Analysis of a moving remote center of motion for robotics-assisted minimally invasive surgery. In: International Conference on Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ, pp. 1440–1446 (2015)

  25. Sadeghian, H., Villani, L., Keshmiri, M., Siciliano, B.: Dynamic multi-priority control in redundant robotic systems1. Robotica 31(7), 1155–1167 (2013)

    Article  Google Scholar 

  26. Shoham, M., Burman, M., Zehavi, E., Joskowicz, L., Batkilin, E., Kunicher, Y.: Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans. Robot. Autom. 19(5), 893–901 (2003)

    Article  Google Scholar 

  27. Taylor, R.H., Lavealle, S., Burdea, G.C., Mosges, R.: Computer-integrated Surgery: Technology and Clinical Applications. Mit Press. (1995)

  28. Vahrenkamp, N., Asfour, T., Metta, G., Sandini, G., Dillmann, R.: Manipulability analysis. In: 12th International Conference on Humanoid Robots (Humanoids), 2012 IEEE-RAS, pp. 568–573 (2012)

  29. Wang, Y., Sackier, J.: Robotically enhanced surgery: from concept to development. Surg. Endosc. 8, 63-6-6 (1996)

    Google Scholar 

  30. Yoshikawa, T.: Manipulability and redundancy control of robotic mechanisms. In: International Conference on Robotics and Auto- mation. Proceedings. 1985 IEEE, vol. 2, pp. 1004–1009 (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Sadeghian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 1.47 MB)

(MP4 19.6 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghian, H., Zokaei, F. & Hadian Jazi, S. Constrained Kinematic Control in Minimally Invasive Robotic Surgery Subject to Remote Center of Motion Constraint. J Intell Robot Syst 95, 901–913 (2019). https://doi.org/10.1007/s10846-018-0927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0927-0

Keywords

Navigation