Skip to main content
Log in

Backstepping Trajectory Tracking Based on Fuzzy Sliding Mode Control for Differential Mobile Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Differential wheeled mobile robot (DWMR) is a typical nonholonomic complex system with the practical importance and theoretically interesting properties. A novel backstepping & fuzzy sliding mode controller (BFSMC) is proposed for trajectory tracking of the DWMR in the presence of model uncertainties and external disturbances. Backstepping control technique is used to eliminate the pose deviations of the mobile robot based on the kinematic model. Sliding mode control is adopted at the dynamic level for velocity tracking of the driving wheels, in which the gain of switching control is adjusted adaptively by means of fuzzy logic inference, in order to mitigate the chattering problem. The tracking error convergence of the BFSMC is demonstrated by means of the Lyapunov stability criteria. Numerical simulation shows that the BFSMC has the better accuracy, rapidity, smoothness and robustness, when compared to the conventional SMC. A vision-guided mobile robot with an onboard camera is developed for the experiment of path tracking. The experimental results further validate the feasibility and effectiveness of the BFSMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasiljević, G., Miklić, D., Draganjac, I., et al.: High-accuracy vehicle localization for autonomous warehousing. Robot. Comput. Integr. Manuf. 42, 1–16 (2016)

    Article  Google Scholar 

  2. Ko, M.H., Ryuh, B., Kim, K.C., et al.: Autonomous greenhouse mobile robot driving strategies from system integration perspective: review and application. IEEE/ASME Trans. Mechatronics 20(4), 1705–1716 (2015)

    Article  Google Scholar 

  3. Wu, X., Lou, P.H., Yu, J., et al.: Intersection recognition and guide-path selection for a vision-based AGV in a bidirectional flow network. Int. J. Adv. Robot. Syst. 11(39), 1–17 (2014)

    Google Scholar 

  4. Lee, S., Lee, S.: Embedded visual SLAM application for low-cost consumer robots. IEEE Robot. Autom. Mag. 12, 83–95 (2013)

    Article  Google Scholar 

  5. Chen, W.H., Zhang, T.: An indoor mobile robot navigation technique using odometry and electronic compass. Int. J. Adv. Robot. Syst. 14(3), 1–15 (2017)

    Google Scholar 

  6. Wu, X., Shen, W., Lou, P., et al.: An automated guided mechatronic tractor for path tracking of heavy-duty robotic vehicles. Mechatronics 35, 23–31 (2016)

    Article  Google Scholar 

  7. Yang, H.J., Fan, X.Z., Xia, Y.Q., et al.: Robust tracking control for wheeled mobile robot based on extended state observer. Adv. Robotics 30(1), 68–78 (2016)

    Article  Google Scholar 

  8. Yang, F., Su, H.Y., Wang, C.L., et al.: Adaptive and sliding mode tracking control for wheeled mobile robots with unknown visual parameters. T I Meas. Control 40(1), 269–278 (2018)

    Article  Google Scholar 

  9. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)

    Article  Google Scholar 

  10. Coelho, P., Nunes, N.: Path-following control of mobile robots in presence of uncertainties. IEEE Trans. Robotics 21(2), 252–260 (2005)

    Article  Google Scholar 

  11. Rossomando, G.F., Soria, C., Carelli, R.: Sliding mode neuro adaptive control in trajectory tracking for mobile robots. J. Intell. Robot. Syst. 74, 931–944 (2014)

    Article  Google Scholar 

  12. Lee, J.K., Choi, Y.H., Park, J.B.: Sliding mode tracking control of mobile robots with approach angle in Cartesian coordinates. Int. J. Control Auto. Syst. 13(3), 718–724 (2015)

    Article  Google Scholar 

  13. Bessas, A., Benalia, A., Boudjema, F.: Integral sliding mode control for trajectory tracking of wheeled mobile robot in presence of uncertainties. J. Control. Sci. Eng. 7915375, 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  14. Esmaeili, N., Alfi, A., Khosravi, H.: Balancing and trajectory tracking of two-wheeled mobile robot using backstepping sliding mode control: design and experiments. J. Intell. Robot. Syst. 87, 601–613 (2017)

    Article  Google Scholar 

  15. Thanok, S., Parnichkun, M.: Longitudinal control of an intelligent vehicle using particle swarm optimization based sliding mode control. Adv. Robotics 29(8), 525–543 (2015)

    Article  Google Scholar 

  16. Mehrjerdi, H., Saad, M.: Chattering reduction on the dynamic tracking control of a nonholonomic mobile robot using exponential sliding mode. Proc. IMechE Part I J. Syst. Control Eng. 225(17), 875–886 (2011)

    Article  Google Scholar 

  17. Xu, Y.: Chattering free robust control for nonlinear systems. IEEE Trans. Control Syst. Technol. 16(6), 1352–1359 (2008)

    Article  Google Scholar 

  18. Das, T., Kar, I.N.: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Consum. Electron 14(3), 501–510 (2006)

    Google Scholar 

  19. Bugeja M.K., Fabri S.G.: Dual adaptive control for trajectory tracking of mobile robots. IEEE ICRA, Roma, Italy, pp. 2215-2220 (2007)

  20. Park, B.S., Yoo, S.J., Park, J.B., et al.: Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans. Control Syst. Technol. 17(1), 207–214 (2009)

    Article  Google Scholar 

  21. Li, Y., Wang, Z., Zhu, L.: Adaptive neural network PID sliding mode dynamic control of nonholonomic mobile robot. ICIA Harbin, China, pp. 753–757 (2010)

  22. Wu, H.M., Karkoub, M., Hwang, CL.: Mixed fuzzy sliding-mode tracking with backstepping formation control for multi-nonholonomic mobile robots subject to uncertainties. J. Intell. Robot. Syst. 79, 73–86 (2015)

    Article  Google Scholar 

  23. Vicent, G., Leopoldo, A., Josep, T.: Path following hybrid control for vehicle stability applied to industrial forklifts. Robot. Auton. Syst. 62(6), 910–922 (2014)

    Article  Google Scholar 

  24. Armesto, L., Girb, V., Sala, A., et al.: Duality-based nonlinear quadratic control: application to mobile robot trajectory-following. IEEE Trans. Control. Syst. Technol. 23(4), 1494–1504 (2015)

    Article  Google Scholar 

  25. Wada, N., Tagami, S., Saeki, M.: Path-following control of a mobile robot in the presence of actuator constraints. Adv. Robotics 21(5-6), 645–659 (2007)

    Article  Google Scholar 

  26. Wang, F., Chao, Z.Q., Huang, L.B., et al.: Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode. Cluster Comput. 7, 1–11 (2017)

    Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Defense Basic Scientific Research Program of China(JCKY2018605C004), the National Natural Science Foundation of China (61105114), the China Postdoctoral Science Foundation (2015M580421), the Key Technology R&D Program of Jiangsu Province of China (BE2014137), the Fundamental Research Funds for the Central Universities of China (NS2016050), and the Foundation of Graduate Innovation Center in NUAA (KFJJ20180513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Jin, P., Zou, T. et al. Backstepping Trajectory Tracking Based on Fuzzy Sliding Mode Control for Differential Mobile Robots. J Intell Robot Syst 96, 109–121 (2019). https://doi.org/10.1007/s10846-019-00980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-00980-9

Keywords

Navigation